ddovidovich
Update app.py
c89721d
raw
history blame
7.22 kB
import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
from imutils import perspective
from scipy.spatial import distance as dist
model=tf.keras.models.load_model("dental_xray_seg.h5")
st.header("Segmentation of Teeth in Panoramic X-ray Image")
examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png"]
def load_image(image_file):
img = Image.open(image_file)
return img
def convert_one_channel(img):
#some images have 3 channels , although they are grayscale image
if len(img.shape)>2:
img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img
else:
return img
def convert_rgb(img):
#some images have 3 channels , although they are grayscale image
if len(img.shape)==2:
img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
return img
else:
return img
def midpoint(ptA, ptB):
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
def CCA_Analysis(orig_image,predict_image,erode_iteration,open_iteration):
kernel1 =( np.ones((5,5), dtype=np.float32))
kernel_sharpening = np.array([[-1,-1,-1],
[-1,9,-1],
[-1,-1,-1]])
image = predict_image
image2 =orig_image
image=cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel1,iterations=open_iteration )
image = cv2.filter2D(image, -1, kernel_sharpening)
image=cv2.erode(image,kernel1,iterations =erode_iteration)
image=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
labels=cv2.connectedComponents(thresh,connectivity=8)[1]
a=np.unique(labels)
count2=0
for label in a:
if label == 0:
continue
# Create a mask
mask = np.zeros(thresh.shape, dtype="uint8")
mask[labels == label] = 255
# Find contours and determine contour area
cnts,hieararch = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0]
c_area = cv2.contourArea(cnts)
# threshhold for tooth count
if c_area>1000:
count2+=1
(x,y),radius = cv2.minEnclosingCircle(cnts)
rect = cv2.minAreaRect(cnts)
box = cv2.boxPoints(rect)
box = np.array(box, dtype="int")
box = perspective.order_points(box)
color1 = (list(np.random.choice(range(150), size=3)))
color =[int(color1[0]), int(color1[1]), int(color1[2])]
cv2.drawContours(image2,[box.astype("int")],0,color,2)
(tl,tr,br,bl)=box
(tltrX,tltrY)=midpoint(tl,tr)
(blbrX,blbrY)=midpoint(bl,br)
# compute the midpoint between the top-left and top-right points,
# followed by the midpoint between the top-righ and bottom-right
(tlblX,tlblY)=midpoint(tl,bl)
(trbrX,trbrY)=midpoint(tr,br)
# draw the midpoints on the image
cv2.circle(image2, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
cv2.circle(image2, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
cv2.circle(image2, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
cv2.circle(image2, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
cv2.line(image2, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),color, 2)
cv2.line(image2, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),color, 2)
dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
pixelsPerMetric=1
dimA = dA * pixelsPerMetric
dimB = dB *pixelsPerMetric
cv2.putText(image2, "{:.1f}pixel".format(dimA),(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
cv2.putText(image2, "{:.1f}pixel".format(dimB),(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
cv2.putText(image2, "{:.1f}".format(label),(int(tltrX - 35), int(tltrY - 5)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
teeth_count=count2
return image2,teeth_count
def detect_decays_static_th(images, dental_masks=None, threshhold=0.9):
decay_masks = []
for image, dental_mask in zip(images, dental_masks):
decay_mask = np.zeros_like(dental_mask)
image_masked_with_dental_mask = image * dental_mask
decay_mask[image_masked_with_dental_mask > threshhold*255] = 1
decay_masks.append(decay_mask)
decay_masks = np.array(decay_masks)
return decay_masks
st.subheader("Upload Dental Panoramic X-ray Image")
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
col1, col2, col3, col4 = st.columns(4)
with col1:
ex=load_image(examples[0])
st.image(ex,width=200)
if st.button('Example 1'):
image_file=examples[0]
with col2:
ex1=load_image(examples[1])
st.image(ex1,width=200)
if st.button('Example 2'):
image_file=examples[1]
with col3:
ex2=load_image(examples[2])
st.image(ex2,width=200)
if st.button('Example 3'):
image_file=examples[2]
with col4:
ex2=load_image(examples[3])
st.image(ex2,width=200)
if st.button('Example 4'):
image_file=examples[3]
if image_file is not None:
image=cv2.imread(image_file)
st.subheader("Original Image")
st.image(image,width=1100)
st.text("Making A Prediction ....")
img=np.asarray(image)
img_cv=convert_one_channel(img)
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
img_cv=np.float32(img_cv/255)
img_cv=np.reshape(img_cv,(1,512,512,1))
prediction=model.predict(img_cv)
predicted=prediction[0]
predicted_rgb = np.expand_dims(predicted, axis=-1)
plt.imsave("predict.png",predicted_rgb)
predict1 = cv2.resize(predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
mask = np.uint8(predict1 * 255)
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img = cv2.drawContours(img, cnts, -1, (0, 0, 255), 2)
decay_masks = detect_decays_static_th(img, mask)
mask = np.uint8(decay_mask * 255)
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img = cv2.fillPoly(img, cnts, (255, 0, 0))
if img is not None :
st.subheader("Predicted teeth shape + caries zones")
st.write(img.shape)
st.image(img,width=1100)
if image.shape[1] < 3000:
image = cv2.resize(image,(3100,1150),interpolation=cv2.INTER_LANCZOS4)
predicted=cv2.imread("predict.png")
predicted = cv2.resize(predicted, (image.shape[1],image.shape[0]), interpolation=cv2.INTER_LANCZOS4)
cca_result,teeth_count=CCA_Analysis(image,predicted,3,2)
if cca_result is not None :
st.subheader("Seperate predicted teeth")
st.write(cca_result.shape)
st.image(cca_result,width=1100)
st.text("Teeth Count = " + str(teeth_count))
st.text("DONE ! ....")