EAV123's picture
Update app.py
00ce994 verified
raw
history blame
2.62 kB
import streamlit as st
import pickle
import numpy as np
from tensorflow.keras.models import load_model
# Load the saved models
with open('rf_model.pkl', 'rb') as file:
rf_model = pickle.load(file)
reloaded_model = load_model('deep_model.h5')
# Define the function to make predictions
def make_prediction(rf_model, nn_model, input_data):
# Predictions from RandomForestRegressor
rf_predictions = rf_model.predict(input_data)
# Predictions from Neural Network model
nn_predictions = nn_model.predict(input_data).flatten()
# Combine predictions
combined_predictions = (rf_predictions + nn_predictions) / 2 # Taking the average of predictions
return combined_predictions
# Define the function to calculate GPA
def calculate_gpa(total_score):
if total_score >= 70:
return 'A (5 points)'
elif total_score >= 60:
return 'B (4 points)'
elif total_score >= 50:
return 'C (3 points)'
elif total_score >= 45:
return 'D (2 points)'
else:
return 'F (0 points)'
# Create the Streamlit app
def main():
# Set page title and configure layout
st.set_page_config(page_title="Exam Score Prediction", layout="wide")
# Add a title and description
st.title("Exam Score Prediction")
st.markdown(
"This app predicts exam scores based on input features such as level, course units, attendance, mid-semester score, and assignments using a combined model."
)
# Create input fields
col1, col2 = st.columns(2)
with col1:
level = st.number_input("Level", min_value=200, max_value=400, step=1)
course_units = st.number_input("Course Units", min_value=1, max_value=4, step=1)
with col2:
attendance = st.slider("Attendance", min_value=1, max_value=10, step=1)
mid_semester = st.slider("Mid Semester Score", min_value=1, max_value=20, step=1)
assignments = st.slider("Assignments", min_value=1, max_value=10, step=1)
# Make prediction
if st.button("Predict Exam Score"):
# Add total_score to the input data
input_data = np.array([[level, course_units, attendance, mid_semester, assignments]])
prediction = make_prediction(rf_model, reloaded_model, input_data)
# Calculate total score
total_score = attendance + mid_semester + assignments + prediction[0]
st.write(f"Predicted Exam Score: {prediction[0]:.2f}")
st.write(f"Total Score: {total_score}")
# Calculate GPA
gpa = calculate_gpa(total_score)
st.write(f"Predicted GPA: {gpa}")
if __name__ == '__main__':
main()