EAV123 commited on
Commit
ae3c5d7
·
verified ·
1 Parent(s): 00ce994

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -20
app.py CHANGED
@@ -1,25 +1,23 @@
1
  import streamlit as st
 
2
  import pickle
3
  import numpy as np
4
- from tensorflow.keras.models import load_model
5
 
6
  # Load the saved models
7
  with open('rf_model.pkl', 'rb') as file:
8
  rf_model = pickle.load(file)
9
 
10
- reloaded_model = load_model('deep_model.h5')
11
-
12
- # Define the function to make predictions
13
- def make_prediction(rf_model, nn_model, input_data):
14
- # Predictions from RandomForestRegressor
15
- rf_predictions = rf_model.predict(input_data)
16
 
17
- # Predictions from Neural Network model
18
- nn_predictions = nn_model.predict(input_data).flatten()
 
 
19
 
20
- # Combine predictions
21
- combined_predictions = (rf_predictions + nn_predictions) / 2 # Taking the average of predictions
22
- return combined_predictions
 
23
 
24
  # Define the function to calculate GPA
25
  def calculate_gpa(total_score):
@@ -40,9 +38,9 @@ def main():
40
  st.set_page_config(page_title="Exam Score Prediction", layout="wide")
41
 
42
  # Add a title and description
43
- st.title("Exam Score Prediction")
44
  st.markdown(
45
- "This app predicts exam scores based on input features such as level, course units, attendance, mid-semester score, and assignments using a combined model."
46
  )
47
 
48
  # Create input fields
@@ -57,19 +55,28 @@ def main():
57
 
58
  # Make prediction
59
  if st.button("Predict Exam Score"):
60
- # Add total_score to the input data
61
  input_data = np.array([[level, course_units, attendance, mid_semester, assignments]])
62
- prediction = make_prediction(rf_model, reloaded_model, input_data)
 
 
 
 
 
 
63
 
64
  # Calculate total score
65
- total_score = attendance + mid_semester + assignments + prediction[0]
66
 
67
- st.write(f"Predicted Exam Score: {prediction[0]:.2f}")
68
- st.write(f"Total Score: {total_score}")
69
 
 
 
 
70
  # Calculate GPA
71
  gpa = calculate_gpa(total_score)
72
  st.write(f"Predicted GPA: {gpa}")
73
 
74
  if __name__ == '__main__':
75
- main()
 
1
  import streamlit as st
2
+ from tensorflow.keras.models import load_model
3
  import pickle
4
  import numpy as np
 
5
 
6
  # Load the saved models
7
  with open('rf_model.pkl', 'rb') as file:
8
  rf_model = pickle.load(file)
9
 
10
+ deep_model = load_model('deep_model.h5')
 
 
 
 
 
11
 
12
+ # Define the function to make predictions using the RandomForestRegressor model
13
+ def make_rf_prediction(model, input_data):
14
+ prediction = model.predict(input_data)
15
+ return prediction
16
 
17
+ # Define the function to make predictions using the deep learning model
18
+ def make_deep_prediction(model, input_data):
19
+ prediction = model.predict(input_data).flatten()
20
+ return prediction
21
 
22
  # Define the function to calculate GPA
23
  def calculate_gpa(total_score):
 
38
  st.set_page_config(page_title="Exam Score Prediction", layout="wide")
39
 
40
  # Add a title and description
41
+ st.title("Exam Score Prediction (DEEP NEURAL NETWORKS AND ENSEMBLE APPROACH")
42
  st.markdown(
43
+ "This app predicts exam scores based on input features such as level, course units, attendance, mid-semester score, and assignments."
44
  )
45
 
46
  # Create input fields
 
55
 
56
  # Make prediction
57
  if st.button("Predict Exam Score"):
58
+ # Create input data
59
  input_data = np.array([[level, course_units, attendance, mid_semester, assignments]])
60
+
61
+ # Make predictions using both models
62
+ rf_prediction = make_rf_prediction(rf_model, input_data)
63
+ deep_prediction = make_deep_prediction(deep_model, input_data)
64
+
65
+ # Combine predictions
66
+ combined_prediction = (rf_prediction + deep_prediction) / 2
67
 
68
  # Calculate total score
69
+ total_score = attendance + mid_semester + assignments + combined_prediction[0]
70
 
71
+ # Ensure total score does not exceed 100
72
+ total_score = min(total_score, 100)
73
 
74
+ st.write(f"Predicted Exam Score: {combined_prediction[0]:.2f}")
75
+ st.write(f"Total Score: {total_score:.2f}")
76
+
77
  # Calculate GPA
78
  gpa = calculate_gpa(total_score)
79
  st.write(f"Predicted GPA: {gpa}")
80
 
81
  if __name__ == '__main__':
82
+ main()