Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,23 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
import pickle
|
3 |
import numpy as np
|
4 |
-
from tensorflow.keras.models import load_model
|
5 |
|
6 |
# Load the saved models
|
7 |
with open('rf_model.pkl', 'rb') as file:
|
8 |
rf_model = pickle.load(file)
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
# Define the function to make predictions
|
13 |
-
def make_prediction(rf_model, nn_model, input_data):
|
14 |
-
# Predictions from RandomForestRegressor
|
15 |
-
rf_predictions = rf_model.predict(input_data)
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
# Define the function to calculate GPA
|
25 |
def calculate_gpa(total_score):
|
@@ -40,9 +38,9 @@ def main():
|
|
40 |
st.set_page_config(page_title="Exam Score Prediction", layout="wide")
|
41 |
|
42 |
# Add a title and description
|
43 |
-
st.title("Exam Score Prediction")
|
44 |
st.markdown(
|
45 |
-
"This app predicts exam scores based on input features such as level, course units, attendance, mid-semester score, and assignments
|
46 |
)
|
47 |
|
48 |
# Create input fields
|
@@ -57,19 +55,28 @@ def main():
|
|
57 |
|
58 |
# Make prediction
|
59 |
if st.button("Predict Exam Score"):
|
60 |
-
#
|
61 |
input_data = np.array([[level, course_units, attendance, mid_semester, assignments]])
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# Calculate total score
|
65 |
-
total_score = attendance + mid_semester + assignments +
|
66 |
|
67 |
-
|
68 |
-
|
69 |
|
|
|
|
|
|
|
70 |
# Calculate GPA
|
71 |
gpa = calculate_gpa(total_score)
|
72 |
st.write(f"Predicted GPA: {gpa}")
|
73 |
|
74 |
if __name__ == '__main__':
|
75 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
import pickle
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
# Load the saved models
|
7 |
with open('rf_model.pkl', 'rb') as file:
|
8 |
rf_model = pickle.load(file)
|
9 |
|
10 |
+
deep_model = load_model('deep_model.h5')
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Define the function to make predictions using the RandomForestRegressor model
|
13 |
+
def make_rf_prediction(model, input_data):
|
14 |
+
prediction = model.predict(input_data)
|
15 |
+
return prediction
|
16 |
|
17 |
+
# Define the function to make predictions using the deep learning model
|
18 |
+
def make_deep_prediction(model, input_data):
|
19 |
+
prediction = model.predict(input_data).flatten()
|
20 |
+
return prediction
|
21 |
|
22 |
# Define the function to calculate GPA
|
23 |
def calculate_gpa(total_score):
|
|
|
38 |
st.set_page_config(page_title="Exam Score Prediction", layout="wide")
|
39 |
|
40 |
# Add a title and description
|
41 |
+
st.title("Exam Score Prediction (DEEP NEURAL NETWORKS AND ENSEMBLE APPROACH")
|
42 |
st.markdown(
|
43 |
+
"This app predicts exam scores based on input features such as level, course units, attendance, mid-semester score, and assignments."
|
44 |
)
|
45 |
|
46 |
# Create input fields
|
|
|
55 |
|
56 |
# Make prediction
|
57 |
if st.button("Predict Exam Score"):
|
58 |
+
# Create input data
|
59 |
input_data = np.array([[level, course_units, attendance, mid_semester, assignments]])
|
60 |
+
|
61 |
+
# Make predictions using both models
|
62 |
+
rf_prediction = make_rf_prediction(rf_model, input_data)
|
63 |
+
deep_prediction = make_deep_prediction(deep_model, input_data)
|
64 |
+
|
65 |
+
# Combine predictions
|
66 |
+
combined_prediction = (rf_prediction + deep_prediction) / 2
|
67 |
|
68 |
# Calculate total score
|
69 |
+
total_score = attendance + mid_semester + assignments + combined_prediction[0]
|
70 |
|
71 |
+
# Ensure total score does not exceed 100
|
72 |
+
total_score = min(total_score, 100)
|
73 |
|
74 |
+
st.write(f"Predicted Exam Score: {combined_prediction[0]:.2f}")
|
75 |
+
st.write(f"Total Score: {total_score:.2f}")
|
76 |
+
|
77 |
# Calculate GPA
|
78 |
gpa = calculate_gpa(total_score)
|
79 |
st.write(f"Predicted GPA: {gpa}")
|
80 |
|
81 |
if __name__ == '__main__':
|
82 |
+
main()
|