Spaces:
Runtime error
Runtime error
File size: 3,550 Bytes
ac1c6ae 230d2d3 ac1c6ae 0cbab2a ac1c6ae 0ab69ad ac1c6ae a329e3c cfa8379 26c2408 ac1c6ae d90092b ac1c6ae cfa8379 a5c02ba ac1c6ae 26c2408 ac1c6ae 0ab69ad 230d2d3 0ab69ad 26c2408 0ab69ad 26c2408 0ab69ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
from colordescriptor import ColorDescriptor
from CLIP import CLIPImageEncoder
import gradio as gr
import os
import cv2
import numpy as np
from datasets import *
dataset = load_dataset("huggan/CelebA-faces")
candidate_subset = dataset["train"].select(range(1000)) # This is a small CBIR app! :D
def index_dataset(dataset):
# This function might need to be split up, to reduce start-up time of app
# It could also use batches to increase speed
# If indexes are saved in files, this is all not really necessary
## Color Embeddings
cd = ColorDescriptor((8, 12, 3))
dataset_with_embeddings = dataset.map(lambda row: {'color_embeddings': cd.describe(row["image"])}) # we assume that dataset has a column 'image'
## CLIP Embeddings
clip_model = CLIPImageEncoder()
dataset_with_embeddings = dataset_with_embeddings.map(clip_model.encode_images, batched=True, batch_size=16)
# Add index
dataset_with_embeddings.add_faiss_index(column='color_embeddings')
dataset_with_embeddings.save_faiss_index('color_embeddings', 'color_index.faiss')
dataset_with_embeddings.add_faiss_index(column='clip_embeddings')
dataset_with_embeddings.save_faiss_index('clip_embeddings', 'clip_index.faiss')
print(dataset_with_embeddings)
return dataset_with_embeddings
def check_index(ds):
index_path = "my_index.faiss"
if os.path.isfile('color_index.faiss') and os.path.isfile('clip_index.faiss'):
ds.load_faiss_index('color_embeddings', 'color_index.faiss')
return ds.load_faiss_index('clip_embeddings', 'clip_index.faiss')
else:
return index_dataset(ds)
dataset_with_embeddings = check_index(candidate_subset)
# Main function, to find similar images
# TODO: implement different distance measures
def get_neighbors(query_image, selected_descriptor, top_k=5):
"""Returns the top k nearest examples to the query image.
Args:
query_image: A PIL object representing the query image.
top_k: An integer representing the number of nearest examples to return.
Returns:
A list of the top_k most similar images as PIL objects.
"""
if "Color Descriptor" in selected_descriptor:
cd = ColorDescriptor((8, 12, 3))
qi_embedding = cd.describe(query_image)
qi_np = np.array(qi_embedding)
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
'color_embeddings', qi_np, k=top_k)
images = retrieved_examples['image'] #retrieved images is a dict, with images and embeddings
return images
if "CLIP" in selected_descriptor:
clip_model = CLIPImageEncoder()
qi_embedding = clip_model.encode_image(query_image)
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples(
'clip_embeddings', qi_embedding, k=top_k)
images = retrieved_examples['image']
return images
else:
print("This descriptor is not yet supported :(")
return []
# Define the Gradio Interface
with gr.Blocks() as demo:
image_input = gr.Image(type="pil", label="Please upload an image")
checkboxes_descr = gr.CheckboxGroup(["Color Descriptor", "LBP", "CLIP"], label="Please choose an descriptor")
btn = gr.Button(value="Submit")
gallery_output = gr.Gallery()
btn.click(get_neighbors, inputs=[image_input, checkboxes_descr], outputs=[gallery_output])
btn_index = gr.Button(value="Re-index Dataset")
btn_index.click(index_dataset)
if __name__ == "__main__":
demo.launch()
|