Spaces:
Sleeping
Sleeping
File size: 17,270 Bytes
615e9f1 2d1db93 615e9f1 2d1db93 615e9f1 2d1db93 615e9f1 2d1db93 615e9f1 2d1db93 615e9f1 3250939 615e9f1 822792a 2d1db93 822792a 615e9f1 2d1db93 615e9f1 e508e94 615e9f1 e508e94 6339b70 e508e94 5a6eb7c e508e94 9ff1243 822792a d32223f e508e94 615e9f1 2d1db93 615e9f1 2d1db93 1fdc3e0 615e9f1 962bd18 d32223f 615e9f1 d32223f 89a6f01 615e9f1 822792a 2d1db93 822792a 9ff1243 615e9f1 962bd18 615e9f1 962bd18 615e9f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import streamlit as st
import streamlit.components.v1 as components
from PIL import Image
import torch
from torchvision.transforms import functional as F
from PIL import Image, ImageEnhance
from htlm_webpage import display_bpmn_xml
import gc
import psutil
import copy
from OCR import text_prediction, filter_text, mapping_text, rescale
from train import prepare_model
from utils import draw_annotations, create_loader, class_dict, arrow_dict, object_dict
from toXML import calculate_pool_bounds, add_diagram_elements
from pathlib import Path
from toXML import create_bpmn_object, create_flow_element
import xml.etree.ElementTree as ET
import numpy as np
from display import draw_stream
from eval import full_prediction
from streamlit_image_comparison import image_comparison
from xml.dom import minidom
from streamlit_cropper import st_cropper
from streamlit_drawable_canvas import st_canvas
from streamlit_image_select import image_select
from utils import find_closest_object
from train import get_faster_rcnn_model, get_arrow_model
import gdown
def get_memory_usage():
process = psutil.Process()
mem_info = process.memory_info()
return mem_info.rss / (1024 ** 2) # Return memory usage in MB
def clear_memory():
st.session_state.clear()
gc.collect()
# Function to read XML content from a file
def read_xml_file(filepath):
""" Read XML content from a file """
with open(filepath, 'r', encoding='utf-8') as file:
return file.read()
# Function to modify bounding box positions based on the given sizes
def modif_box_pos(pred, size):
modified_pred = copy.deepcopy(pred) # Make a deep copy of the prediction
for i, (x1, y1, x2, y2) in enumerate(modified_pred['boxes']):
center = [(x1 + x2) / 2, (y1 + y2) / 2]
label = class_dict[modified_pred['labels'][i]]
if label in size:
modified_pred['boxes'][i] = [center[0] - size[label][0] / 2, center[1] - size[label][1] / 2, center[0] + size[label][0] / 2, center[1] + size[label][1] / 2]
return modified_pred['boxes']
# Function to create a BPMN XML file from prediction results
def create_XML(full_pred, text_mapping, scale):
namespaces = {
'bpmn': 'http://www.omg.org/spec/BPMN/20100524/MODEL',
'bpmndi': 'http://www.omg.org/spec/BPMN/20100524/DI',
'di': 'http://www.omg.org/spec/DD/20100524/DI',
'dc': 'http://www.omg.org/spec/DD/20100524/DC',
'xsi': 'http://www.w3.org/2001/XMLSchema-instance'
}
size_elements = {
'start': (43.2, 43.2),
'task': (120, 96),
'message': (43.2, 43.2),
'messageEvent': (43.2, 43.2),
'end': (43.2, 43.2),
'exclusiveGateway': (60, 60),
'event': (43.2, 43.2),
'parallelGateway': (60, 60),
'dataObject': (48, 72),
'dataStore': (72, 72),
'subProcess': (144, 108),
'eventBasedGateway': (60, 60),
'timerEvent': (48, 48),
}
definitions = ET.Element('bpmn:definitions', {
'xmlns:xsi': namespaces['xsi'],
'xmlns:bpmn': namespaces['bpmn'],
'xmlns:bpmndi': namespaces['bpmndi'],
'xmlns:di': namespaces['di'],
'xmlns:dc': namespaces['dc'],
'targetNamespace': "http://example.bpmn.com",
'id': "simpleExample"
})
#modify the boxes positions
old_boxes = copy.deepcopy(full_pred)
full_pred['boxes'] = modif_box_pos(full_pred, size_elements)
# Create BPMN collaboration element
collaboration = ET.SubElement(definitions, 'bpmn:collaboration', id='collaboration_1')
# Create BPMN process elements
process = []
for idx in range(len(full_pred['pool_dict'].items())):
process_id = f'process_{idx+1}'
process.append(ET.SubElement(definitions, 'bpmn:process', id=process_id, isExecutable='false', name=text_mapping[full_pred['BPMN_id'][list(full_pred['pool_dict'].keys())[idx]]]))
bpmndi = ET.SubElement(definitions, 'bpmndi:BPMNDiagram', id='BPMNDiagram_1')
bpmnplane = ET.SubElement(bpmndi, 'bpmndi:BPMNPlane', id='BPMNPlane_1', bpmnElement='collaboration_1')
full_pred['boxes'] = rescale(scale, full_pred['boxes'])
# Add diagram elements for each pool
for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()):
pool_id = f'participant_{idx+1}'
pool = ET.SubElement(collaboration, 'bpmn:participant', id=pool_id, processRef=f'process_{idx+1}', name=text_mapping[full_pred['BPMN_id'][list(full_pred['pool_dict'].keys())[idx]]])
# Calculate the bounding box for the pool
if len(keep_elements) == 0:
min_x, min_y, max_x, max_y = full_pred['boxes'][pool_index]
pool_width = max_x - min_x
pool_height = max_y - min_y
else:
min_x, min_y, max_x, max_y = calculate_pool_bounds(full_pred, keep_elements, size_elements)
pool_width = max_x - min_x + 100 # Adding padding
pool_height = max_y - min_y + 100 # Adding padding
add_diagram_elements(bpmnplane, pool_id, min_x - 50, min_y - 50, pool_width, pool_height)
# Create BPMN elements for each pool
for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()):
create_bpmn_object(process[idx], bpmnplane, text_mapping, definitions, size_elements, full_pred, keep_elements)
# Create message flow elements
message_flows = [i for i, label in enumerate(full_pred['labels']) if class_dict[label] == 'messageFlow']
for idx in message_flows:
create_flow_element(bpmnplane, text_mapping, idx, size_elements, full_pred, collaboration, message=True)
# Create sequence flow elements
for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()):
for i in keep_elements:
if full_pred['labels'][i] == list(class_dict.values()).index('sequenceFlow'):
create_flow_element(bpmnplane, text_mapping, i, size_elements, full_pred, process[idx], message=False)
# Generate pretty XML string
tree = ET.ElementTree(definitions)
rough_string = ET.tostring(definitions, 'utf-8')
reparsed = minidom.parseString(rough_string)
pretty_xml_as_string = reparsed.toprettyxml(indent=" ")
full_pred['boxes'] = rescale(1/scale, full_pred['boxes'])
full_pred['boxes'] = old_boxes
return pretty_xml_as_string
# Function to load the models only once and use session state to keep track of it
def load_models():
with st.spinner('Loading model...'):
model_object = get_faster_rcnn_model(len(object_dict))
model_arrow = get_arrow_model(len(arrow_dict),2)
url_arrow = 'https://drive.google.com/uc?id=1xwfvo7BgDWz-1jAiJC1DCF0Wp8YlFNWt'
url_object = 'https://drive.google.com/uc?id=1GiM8xOXG6M6r8J9HTOeMJz9NKu7iumZi'
# Define paths to save models
output_arrow = 'model_arrow.pth'
output_object = 'model_object.pth'
# Download models using gdown
if not Path(output_arrow).exists():
# Download models using gdown
gdown.download(url_arrow, output_arrow, quiet=False)
else:
print('Model arrow downloaded from local')
if not Path(output_object).exists():
gdown.download(url_object, output_object, quiet=False)
else:
print('Model object downloaded from local')
# Load models
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_arrow.load_state_dict(torch.load(output_arrow, map_location=device))
model_object.load_state_dict(torch.load(output_object, map_location=device))
st.session_state.model_loaded = True
st.session_state.model_arrow = model_arrow
st.session_state.model_object = model_object
# Function to prepare the image for processing
def prepare_image(image, pad=True, new_size=(1333, 1333)):
original_size = image.size
# Calculate scale to fit the new size while maintaining aspect ratio
scale = min(new_size[0] / original_size[0], new_size[1] / original_size[1])
new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale))
# Resize image to new scaled size
image = F.resize(image, (new_scaled_size[1], new_scaled_size[0]))
if pad:
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.5) # Adjust the brightness if necessary
# Pad the resized image to make it exactly the desired size
padding = [0, 0, new_size[0] - new_scaled_size[0], new_size[1] - new_scaled_size[1]]
image = F.pad(image, padding, fill=200, padding_mode='edge')
return new_scaled_size, image
# Function to display various options for image annotation
def display_options(image, score_threshold):
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
write_class = st.toggle("Write Class", value=True)
draw_keypoints = st.toggle("Draw Keypoints", value=True)
draw_boxes = st.toggle("Draw Boxes", value=True)
with col2:
draw_text = st.toggle("Draw Text", value=False)
write_text = st.toggle("Write Text", value=False)
draw_links = st.toggle("Draw Links", value=False)
with col3:
write_score = st.toggle("Write Score", value=True)
write_idx = st.toggle("Write Index", value=False)
with col4:
# Define options for the dropdown menu
dropdown_options = [list(class_dict.values())[i] for i in range(len(class_dict))]
dropdown_options[0] = 'all'
selected_option = st.selectbox("Show class", dropdown_options)
# Draw the annotated image with selected options
annotated_image = draw_stream(
np.array(image), prediction=st.session_state.prediction, text_predictions=st.session_state.text_pred,
draw_keypoints=draw_keypoints, draw_boxes=draw_boxes, draw_links=draw_links, draw_twins=False, draw_grouped_text=draw_text,
write_class=write_class, write_text=write_text, keypoints_correction=True, write_idx=write_idx, only_print=selected_option,
score_threshold=score_threshold, write_score=write_score, resize=True, return_image=True, axis=True
)
# Display the original and annotated images side by side
image_comparison(
img1=annotated_image,
img2=image,
label1="Annotated Image",
label2="Original Image",
starting_position=99,
width=1000,
)
# Function to perform inference on the uploaded image using the loaded models
def perform_inference(model_object, model_arrow, image, score_threshold):
_, uploaded_image = prepare_image(image, pad=False)
img_tensor = F.to_tensor(prepare_image(image.convert('RGB'))[1])
# Display original image
if 'image_placeholder' not in st.session_state:
image_placeholder = st.empty() # Create an empty placeholder
image_placeholder.image(uploaded_image, caption='Original Image', width=1000)
# Prediction
_, st.session_state.prediction = full_prediction(model_object, model_arrow, img_tensor, score_threshold=score_threshold, iou_threshold=0.5)
# Perform OCR on the uploaded image
ocr_results = text_prediction(uploaded_image)
# Filter and map OCR results to prediction results
st.session_state.text_pred = filter_text(ocr_results, threshold=0.5)
st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=0.5)
# Remove the original image display
image_placeholder.empty()
# Force garbage collection
gc.collect()
@st.cache_data
def get_image(uploaded_file):
return Image.open(uploaded_file).convert('RGB')
def main():
st.set_page_config(layout="wide")
# Add your company logo banner
st.image("./images/banner.png", use_column_width=True)
# Sidebar content
st.sidebar.header("This BPMN AI model recognition is proposed by: \n ELCA in collaboration with EPFL.")
st.sidebar.subheader("Instructions:")
st.sidebar.text("1. Upload you image")
st.sidebar.text("2. Crop the image \n (try to put the BPMN diagram \n in the center of the image)")
st.sidebar.text("3. Set the score threshold \n for prediction (default is 0.5)")
st.sidebar.text("4. Set the scale for the XML file \n (default is 1.0)")
st.sidebar.text("5. Click on 'Launch Prediction'")
st.sidebar.text("6. You can now see the annotation \n and the BPMN XML result")
st.sidebar.text("7. You can modify and download \n the result in right format")
st.sidebar.subheader("If there is an error, try to:")
st.sidebar.text("1. Change the score threshold")
st.sidebar.text("2. Re-crop the image by placing\n the BPMN diagram in the center\n of the image")
st.sidebar.text("3. Re-Launch the prediction")
st.sidebar.subheader("You can close this sidebar")
# Set the title of the app
st.title("BPMN model recognition demo")
# Display current memory usage
memory_usage = get_memory_usage()
print(f"Current memory usage: {memory_usage:.2f} MB")
# Initialize the session state for storing pool bounding boxes
if 'pool_bboxes' not in st.session_state:
st.session_state.pool_bboxes = []
# Load the models using the defined function
if 'model_object' not in st.session_state or 'model_arrow' not in st.session_state:
clear_memory()
load_models()
model_arrow = st.session_state.model_arrow
model_object = st.session_state.model_object
#Create the layout for the app
col1, col2 = st.columns(2)
with col1:
with st.expander("Use example images"):
img_selected = image_select("If you have no image and just want to test the demo, click on one of these images", ["./images/None.jpg", "./images/example1.jpg", "./images/example2.jpg", "./images/example3.jpg"],
captions=["None", "Example 1", "Example 2", "Example 3"], index=0, use_container_width=False, return_value="original")
if img_selected== './images/None.jpg':
print('No example image selected')
#delete the prediction
if 'prediction' in st.session_state:
del st.session_state['prediction']
img_selected = None
# Create a file uploader for the user to upload an image
if img_selected is not None:
uploaded_file = img_selected
else:
uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"])
# Display the uploaded image if the user has uploaded an image
if uploaded_file is not None:
with st.spinner('Waiting for image display...'):
original_image = get_image(uploaded_file)
col1, col2 = st.columns(2)
# Create a cropper to allow the user to crop the image and display the cropped image
with col1:
cropped_image = st_cropper(original_image, realtime_update=True, box_color='#0000FF', should_resize_image=True, default_coords=(30, original_image.size[0]-30, 30, original_image.size[1]-30))
with col2:
st.image(cropped_image, caption="Cropped Image", use_column_width=False, width=500)
# Display the options for the user to set the score threshold and scale
if cropped_image is not None:
col1, col2, col3 = st.columns(3)
with col1:
score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5, step=0.05)
with col2:
st.session_state.scale = st.slider("Set scale for XML file", min_value=0.1, max_value=2.0, value=1.0, step=0.1)
# Launch the prediction when the user clicks the button
if st.button("Launch Prediction"):
st.session_state.crop_image = cropped_image
with st.spinner('Processing...'):
perform_inference(model_object, model_arrow, st.session_state.crop_image, score_threshold)
#st.session_state.prediction = modif_box_pos(st.session_state.prediction, object_dict)
st.balloons()
else:
#delete the prediction
if 'prediction' in st.session_state:
del st.session_state['prediction']
# If the prediction has been made and the user has uploaded an image, display the options for the user to annotate the image
if 'prediction' in st.session_state and uploaded_file is not None:
with st.spinner('Waiting for result display...'):
display_options(st.session_state.crop_image, score_threshold)
#if st.session_state.prediction_up==True:
with st.spinner('Waiting for BPMN modeler...'):
st.session_state.bpmn_xml = create_XML(st.session_state.prediction.copy(), st.session_state.text_mapping, st.session_state.scale)
display_bpmn_xml(st.session_state.bpmn_xml)
# Force garbage collection after display
gc.collect()
if __name__ == "__main__":
print('Starting the app...')
main()
|