Crawl4AI / docs /md_v2 /api /strategies.md
amaye15
test
03c0888
# Extraction & Chunking Strategies API
This documentation covers the API reference for extraction and chunking strategies in Crawl4AI.
## Extraction Strategies
All extraction strategies inherit from the base `ExtractionStrategy` class and implement two key methods:
- `extract(url: str, html: str) -> List[Dict[str, Any]]`
- `run(url: str, sections: List[str]) -> List[Dict[str, Any]]`
### LLMExtractionStrategy
Used for extracting structured data using Language Models.
```python
LLMExtractionStrategy(
# Required Parameters
provider: str = DEFAULT_PROVIDER, # LLM provider (e.g., "ollama/llama2")
api_token: Optional[str] = None, # API token
# Extraction Configuration
instruction: str = None, # Custom extraction instruction
schema: Dict = None, # Pydantic model schema for structured data
extraction_type: str = "block", # "block" or "schema"
# Chunking Parameters
chunk_token_threshold: int = 4000, # Maximum tokens per chunk
overlap_rate: float = 0.1, # Overlap between chunks
word_token_rate: float = 0.75, # Word to token conversion rate
apply_chunking: bool = True, # Enable/disable chunking
# API Configuration
base_url: str = None, # Base URL for API
extra_args: Dict = {}, # Additional provider arguments
verbose: bool = False # Enable verbose logging
)
```
### CosineStrategy
Used for content similarity-based extraction and clustering.
```python
CosineStrategy(
# Content Filtering
semantic_filter: str = None, # Topic/keyword filter
word_count_threshold: int = 10, # Minimum words per cluster
sim_threshold: float = 0.3, # Similarity threshold
# Clustering Parameters
max_dist: float = 0.2, # Maximum cluster distance
linkage_method: str = 'ward', # Clustering method
top_k: int = 3, # Top clusters to return
# Model Configuration
model_name: str = 'sentence-transformers/all-MiniLM-L6-v2', # Embedding model
verbose: bool = False # Enable verbose logging
)
```
### JsonCssExtractionStrategy
Used for CSS selector-based structured data extraction.
```python
JsonCssExtractionStrategy(
schema: Dict[str, Any], # Extraction schema
verbose: bool = False # Enable verbose logging
)
# Schema Structure
schema = {
"name": str, # Schema name
"baseSelector": str, # Base CSS selector
"fields": [ # List of fields to extract
{
"name": str, # Field name
"selector": str, # CSS selector
"type": str, # Field type: "text", "attribute", "html", "regex"
"attribute": str, # For type="attribute"
"pattern": str, # For type="regex"
"transform": str, # Optional: "lowercase", "uppercase", "strip"
"default": Any # Default value if extraction fails
}
]
}
```
## Chunking Strategies
All chunking strategies inherit from `ChunkingStrategy` and implement the `chunk(text: str) -> list` method.
### RegexChunking
Splits text based on regex patterns.
```python
RegexChunking(
patterns: List[str] = None # Regex patterns for splitting
# Default: [r'\n\n']
)
```
### SlidingWindowChunking
Creates overlapping chunks with a sliding window approach.
```python
SlidingWindowChunking(
window_size: int = 100, # Window size in words
step: int = 50 # Step size between windows
)
```
### OverlappingWindowChunking
Creates chunks with specified overlap.
```python
OverlappingWindowChunking(
window_size: int = 1000, # Chunk size in words
overlap: int = 100 # Overlap size in words
)
```
## Usage Examples
### LLM Extraction
```python
from pydantic import BaseModel
from crawl4ai.extraction_strategy import LLMExtractionStrategy
# Define schema
class Article(BaseModel):
title: str
content: str
author: str
# Create strategy
strategy = LLMExtractionStrategy(
provider="ollama/llama2",
schema=Article.schema(),
instruction="Extract article details"
)
# Use with crawler
result = await crawler.arun(
url="https://example.com/article",
extraction_strategy=strategy
)
# Access extracted data
data = json.loads(result.extracted_content)
```
### CSS Extraction
```python
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
# Define schema
schema = {
"name": "Product List",
"baseSelector": ".product-card",
"fields": [
{
"name": "title",
"selector": "h2.title",
"type": "text"
},
{
"name": "price",
"selector": ".price",
"type": "text",
"transform": "strip"
},
{
"name": "image",
"selector": "img",
"type": "attribute",
"attribute": "src"
}
]
}
# Create and use strategy
strategy = JsonCssExtractionStrategy(schema)
result = await crawler.arun(
url="https://example.com/products",
extraction_strategy=strategy
)
```
### Content Chunking
```python
from crawl4ai.chunking_strategy import OverlappingWindowChunking
# Create chunking strategy
chunker = OverlappingWindowChunking(
window_size=500, # 500 words per chunk
overlap=50 # 50 words overlap
)
# Use with extraction strategy
strategy = LLMExtractionStrategy(
provider="ollama/llama2",
chunking_strategy=chunker
)
result = await crawler.arun(
url="https://example.com/long-article",
extraction_strategy=strategy
)
```
## Best Practices
1. **Choose the Right Strategy**
- Use `LLMExtractionStrategy` for complex, unstructured content
- Use `JsonCssExtractionStrategy` for well-structured HTML
- Use `CosineStrategy` for content similarity and clustering
2. **Optimize Chunking**
```python
# For long documents
strategy = LLMExtractionStrategy(
chunk_token_threshold=2000, # Smaller chunks
overlap_rate=0.1 # 10% overlap
)
```
3. **Handle Errors**
```python
try:
result = await crawler.arun(
url="https://example.com",
extraction_strategy=strategy
)
if result.success:
content = json.loads(result.extracted_content)
except Exception as e:
print(f"Extraction failed: {e}")
```
4. **Monitor Performance**
```python
strategy = CosineStrategy(
verbose=True, # Enable logging
word_count_threshold=20, # Filter short content
top_k=5 # Limit results
)
```