EduTechTeam's picture
Update app.py
678d750 verified
import gradio as gr
import shutil
import os
from langchain_community.vectorstores import FAISS
#from langchain_community.document_loaders import PyPDFLoader
from langchain.document_loaders import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from langchain_openai import ChatOpenAI
import torch
import fitz
from dotenv import load_dotenv, set_key
load_dotenv(dotenv_path=".env")
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2","gpt-4o-mini"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load and split PDF document
def load_doc():
# Processing for one document only
# loader = PyPDFLoader(file_path)
# pages = loader.load()
path="pdfs"
loaders = []
for file in os.listdir(path):
file_path = os.path.abspath(os.path.join(path, file))
print(f"Processing file: {file_path}")
if os.path.isfile(file_path):
loader = PyMuPDFLoader(file_path)
loaders.append(loader)
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 100,
chunk_overlap = 16
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits):
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN"),
temperature = temperature,
max_new_tokens = max_tokens,
top_k = top_k,
)
elif llm_model== "gpt-4o-mini":
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
llm = ChatOpenAI(
model_name="gpt-4o-mini",
temperature = temperature,
max_tokens = max_tokens,
)
else:
llm = HuggingFaceEndpoint(
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN"),
repo_id=llm_model,
temperature = temperature,
max_new_tokens = max_tokens,
top_k = top_k,
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever=vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
# Initialize database
def initialize_database(list_file_obj, progress=gr.Progress()):
if not os.path.exists("pdfs"):
os.mkdir("pdfs")
for file_obj in list_file_obj:
shutil.copy(file_obj.name,"pdfs")
# Load document and create splits
doc_splits = load_doc()
# Create or load vector database
vector_db = create_db(doc_splits)
return vector_db, "Database created!"
# Initialize LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
# print("llm_option",llm_option)
llm_name = list_llm[llm_option]
print("llm_name: ",llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "QA chain initialized. Chatbot is ready!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
# Generate response using QA chain
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
# Langchain sources are zero-based
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
# Append user message and response to chat history
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def setup_gradio_interface():
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>RAG PDF Chatbot</h1><center>")
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents.\
<b>Please do not upload confidential documents.</b>
""")
def set_env_vars(openai_key, huggingface_token):
"""將 API 金鑰設為環境變數並儲存至 .env"""
if openai_key:
os.environ["OPENAI_API_KEY"] = openai_key
set_key(".env", "OPENAI_API_KEY", openai_key)
if huggingface_token:
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
set_key(".env", "HUGGINGFACEHUB_API_TOKEN", huggingface_token)
return "Environment variables set successfully!"
with gr.Tab("帳號輸入"):
with gr.Row():
with gr.Column():
gr.Markdown("<b>Step 1 - Input OpenAI API Key</b>")
with gr.Row():
openai_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your OpenAI API Key",
value=os.getenv("OPENAI_API_KEY", ""),
type="password",
)
with gr.Column():
gr.Markdown("<b>Step 2 - Input HuggingFaceHub API Token</b>")
with gr.Row():
huggingface_token_input = gr.Textbox(
label="HuggingFaceHub API Token",
placeholder="Enter your HuggingFaceHub API Key",
value=os.getenv("HUGGINGFACEHUB_API_TOKEN", ""),
type="password",
)
submit_button = gr.Button("Submit")
status_output = gr.Label()
with gr.Tab("對話機器人"):
with gr.Row():
with gr.Column():
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
with gr.Row():
document = gr.Files(height=300, file_count="multiple", label="Upload PDF documents")
with gr.Row():
db_btn = gr.Button("Create vector database")
with gr.Row():
db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
gr.Markdown("<style>body { font-size: 16px; }</style><b>Step 2 - Select Large Language Model (LLM) and input parameters</b>")
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
with gr.Row():
with gr.Accordion("LLM input parameters", open=False):
with gr.Row():
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
with gr.Row():
llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
with gr.Column():
gr.Markdown("<b>Step 3 - Chat with your Document</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevent context from the source document", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Ask a question", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Preprocessing events
db_btn.click(initialize_database, \
inputs=[document], \
outputs=[vector_db, db_progress])
qachain_btn.click(initialize_LLM, \
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
# Chatbot events
msg.submit(conversation, \
inputs=[qa_chain, msg, chatbot], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
submit_btn.click(conversation, \
inputs=[qa_chain, msg, chatbot], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
def set_env_vars(openai_key, huggingface_token):
"""將 API 金鑰設為環境變數並儲存至 .env"""
if openai_key:
os.environ["OPENAI_API_KEY"] = openai_key
set_key(".env", "OPENAI_API_KEY", openai_key)
if huggingface_token:
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
set_key(".env", "HUGGINGFACEHUB_API_TOKEN", huggingface_token)
return "Environment variables set successfully!"
# 綁定按鈕與設置環境變數的函數
submit_button.click(
set_env_vars,
inputs=[openai_key_input, huggingface_token_input],
outputs=[status_output]
)
return demo
demo = setup_gradio_interface()
demo.launch(debug=True)