Spaces:
Running
Running
File size: 1,845 Bytes
95fc527 25b797a 20712aa 2ee1f34 25b797a 20712aa 25b797a 8aec507 1294d13 95fc527 20712aa 1294d13 2ee1f34 1294d13 2ee1f34 1294d13 2ee1f34 b147674 20712aa b147674 25b797a b147674 25b797a 1294d13 b147674 20712aa b147674 25b797a b147674 25b797a b147674 25b797a b147674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import os
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from langdetect import detect, DetectorFactory
# Ensure consistent language detection results
DetectorFactory.seed = 0
# Set Hugging Face cache directory to a writable location
os.environ["HF_HOME"] = "/tmp/huggingface"
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
app = FastAPI()
# Load the original tokenizer from the base model
original_tokenizer = AutoTokenizer.from_pretrained("tabularisai/multilingual-sentiment-analysis")
# Load the fine-tuned model (johndoee/sentiment) and pass the tokenizer explicitly
multilingual_model = pipeline(
"sentiment-analysis",
model="johndoee/sentiment",
tokenizer=original_tokenizer
)
# Load the English sentiment model
english_model = pipeline("sentiment-analysis", model="siebert/sentiment-roberta-large-english")
class SentimentRequest(BaseModel):
text: str
class SentimentResponse(BaseModel):
original_text: str
language_detected: str
sentiment: str
confidence_score: float
def detect_language(text):
try:
return detect(text)
except Exception:
return "unknown"
@app.get("/")
def home():
return {"message": "Sentiment Analysis API is running!"}
@app.post("/analyze/", response_model=SentimentResponse)
def analyze_sentiment(request: SentimentRequest):
text = request.text
language = detect_language(text)
# Choose the appropriate model based on language
if language == "en":
result = english_model(text)
else:
result = multilingual_model(text)
return SentimentResponse(
original_text=text,
language_detected=language,
sentiment=result[0]["label"].lower(),
confidence_score=result[0]["score"],
)
|