|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
summarizer = pipeline('summarization', model='Eitanli/resume_label_summary_model') |
|
|
|
|
|
def predict(text, min_length, max_length): |
|
summary = summarizer(text, min_length=min_length, max_length=max_length) |
|
return summary[0]['summary_text'] |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Textbox(label="Paste resume here"), |
|
gr.Slider(2, 20, step=1.0, value=2, label="min_length", info="Choose between 2 and 20"), |
|
gr.Slider(10, 30, step=1.0, value=10, label="max_length", info="Choose between 10 and 30")], |
|
outputs="text") |
|
iface.launch() |