|
import gradio as gr |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
|
|
|
|
model_name = "Electricarchmage/cookbookgpt" |
|
model = GPT2LMHeadModel.from_pretrained(model_name) |
|
tokenizer = GPT2Tokenizer.from_pretrained(model_name) |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
input_text = system_message + "\n" |
|
|
|
for val in history: |
|
if val[0]: |
|
input_text += f"User: {val[0]}\n" |
|
if val[1]: |
|
input_text += f"Assistant: {val[1]}\n" |
|
|
|
input_text += f"User: {message}\nAssistant:" |
|
|
|
|
|
inputs = tokenizer(input_text, return_tensors="pt", max_length=1024, truncation=True) |
|
|
|
|
|
output = model.generate( |
|
inputs["input_ids"], |
|
max_length=max_tokens + len(inputs["input_ids"][0]), |
|
temperature=temperature, |
|
top_p=top_p, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=2, |
|
) |
|
|
|
|
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
|
|
assistant_reply = response.split("Assistant:")[-1].strip() |
|
|
|
return assistant_reply |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|