ElenaRyumina
commited on
Update App (#2)
Browse files- Summary (d5e9efc892e08de19347bb5a8522ec5e27809a26)
- .flake8 +5 -0
- CODE_OF_CONDUCT.md +80 -0
- app.css +68 -0
- app.py +18 -156
- app/__init__.py +0 -0
- app/app_utils.py +52 -0
- app/config.py +39 -0
- app/description.py +17 -0
- app/face_utils.py +33 -0
- app/model.py +55 -0
- config.toml +5 -0
- requirements.txt +1 -1
.flake8
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
; https://www.flake8rules.com/
|
2 |
+
|
3 |
+
[flake8]
|
4 |
+
max-line-length = 120
|
5 |
+
ignore = E203, E402, E741, W503
|
CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code of Conduct
|
2 |
+
|
3 |
+
## Our Pledge
|
4 |
+
|
5 |
+
In the interest of fostering an open and welcoming environment, we as
|
6 |
+
contributors and maintainers pledge to make participation in our project and
|
7 |
+
our community a harassment-free experience for everyone, regardless of age, body
|
8 |
+
size, disability, ethnicity, sex characteristics, gender identity and expression,
|
9 |
+
level of experience, education, socio-economic status, nationality, personal
|
10 |
+
appearance, race, religion, or sexual identity and orientation.
|
11 |
+
|
12 |
+
## Our Standards
|
13 |
+
|
14 |
+
Examples of behavior that contributes to creating a positive environment
|
15 |
+
include:
|
16 |
+
|
17 |
+
* Using welcoming and inclusive language
|
18 |
+
* Being respectful of differing viewpoints and experiences
|
19 |
+
* Gracefully accepting constructive criticism
|
20 |
+
* Focusing on what is best for the community
|
21 |
+
* Showing empathy towards other community members
|
22 |
+
|
23 |
+
Examples of unacceptable behavior by participants include:
|
24 |
+
|
25 |
+
* The use of sexualized language or imagery and unwelcome sexual attention or
|
26 |
+
advances
|
27 |
+
* Trolling, insulting/derogatory comments, and personal or political attacks
|
28 |
+
* Public or private harassment
|
29 |
+
* Publishing others' private information, such as a physical or electronic
|
30 |
+
address, without explicit permission
|
31 |
+
* Other conduct which could reasonably be considered inappropriate in a
|
32 |
+
professional setting
|
33 |
+
|
34 |
+
## Our Responsibilities
|
35 |
+
|
36 |
+
Project maintainers are responsible for clarifying the standards of acceptable
|
37 |
+
behavior and are expected to take appropriate and fair corrective action in
|
38 |
+
response to any instances of unacceptable behavior.
|
39 |
+
|
40 |
+
Project maintainers have the right and responsibility to remove, edit, or
|
41 |
+
reject comments, commits, code, wiki edits, issues, and other contributions
|
42 |
+
that are not aligned to this Code of Conduct, or to ban temporarily or
|
43 |
+
permanently any contributor for other behaviors that they deem inappropriate,
|
44 |
+
threatening, offensive, or harmful.
|
45 |
+
|
46 |
+
## Scope
|
47 |
+
|
48 |
+
This Code of Conduct applies within all project spaces, and it also applies when
|
49 |
+
an individual is representing the project or its community in public spaces.
|
50 |
+
Examples of representing a project or community include using an official
|
51 |
+
project e-mail address, posting via an official social media account, or acting
|
52 |
+
as an appointed representative at an online or offline event. Representation of
|
53 |
+
a project may be further defined and clarified by project maintainers.
|
54 |
+
|
55 |
+
This Code of Conduct also applies outside the project spaces when there is a
|
56 |
+
reasonable belief that an individual's behavior may have a negative impact on
|
57 |
+
the project or its community.
|
58 |
+
|
59 |
+
## Enforcement
|
60 |
+
|
61 |
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
62 |
+
reported by contacting the project team at <[email protected]>. All
|
63 |
+
complaints will be reviewed and investigated and will result in a response that
|
64 |
+
is deemed necessary and appropriate to the circumstances. The project team is
|
65 |
+
obligated to maintain confidentiality with regard to the reporter of an incident.
|
66 |
+
Further details of specific enforcement policies may be posted separately.
|
67 |
+
|
68 |
+
Project maintainers who do not follow or enforce the Code of Conduct in good
|
69 |
+
faith may face temporary or permanent repercussions as determined by other
|
70 |
+
members of the project's leadership.
|
71 |
+
|
72 |
+
## Attribution
|
73 |
+
|
74 |
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
|
75 |
+
available at <https://www.contributor-covenant.org/version/1/4/code-of-conduct.html>
|
76 |
+
|
77 |
+
[homepage]: https://www.contributor-covenant.org
|
78 |
+
|
79 |
+
For answers to common questions about this code of conduct, see
|
80 |
+
<https://www.contributor-covenant.org/faq>
|
app.css
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
div.app-flex-container {
|
2 |
+
display: flex;
|
3 |
+
align-items: left;
|
4 |
+
}
|
5 |
+
|
6 |
+
div.app-flex-container > img {
|
7 |
+
margin-right: 6px;
|
8 |
+
}
|
9 |
+
|
10 |
+
div.dl1 div.upload-container {
|
11 |
+
height: 350px;
|
12 |
+
max-height: 350px;
|
13 |
+
}
|
14 |
+
|
15 |
+
div.dl2 {
|
16 |
+
max-height: 200px;
|
17 |
+
}
|
18 |
+
|
19 |
+
div.dl2 img {
|
20 |
+
max-height: 200px;
|
21 |
+
}
|
22 |
+
|
23 |
+
.submit {
|
24 |
+
display: inline-block;
|
25 |
+
padding: 10px 20px;
|
26 |
+
font-size: 16px;
|
27 |
+
font-weight: bold;
|
28 |
+
text-align: center;
|
29 |
+
text-decoration: none;
|
30 |
+
cursor: pointer;
|
31 |
+
border: var(--button-border-width) solid var(--button-primary-border-color);
|
32 |
+
background: var(--button-primary-background-fill);
|
33 |
+
color: var(--button-primary-text-color);
|
34 |
+
border-radius: 8px;
|
35 |
+
transition: all 0.3s ease;
|
36 |
+
}
|
37 |
+
|
38 |
+
.submit[disabled] {
|
39 |
+
cursor: not-allowed;
|
40 |
+
opacity: 0.6;
|
41 |
+
}
|
42 |
+
|
43 |
+
.submit:hover:not([disabled]) {
|
44 |
+
border-color: var(--button-primary-border-color-hover);
|
45 |
+
background: var(--button-primary-background-fill-hover);
|
46 |
+
color: var(--button-primary-text-color-hover);
|
47 |
+
}
|
48 |
+
|
49 |
+
.clear {
|
50 |
+
display: inline-block;
|
51 |
+
padding: 10px 20px;
|
52 |
+
font-size: 16px;
|
53 |
+
font-weight: bold;
|
54 |
+
text-align: center;
|
55 |
+
text-decoration: none;
|
56 |
+
cursor: pointer;
|
57 |
+
border-radius: 8px;
|
58 |
+
transition: all 0.3s ease;
|
59 |
+
}
|
60 |
+
|
61 |
+
.clear[disabled] {
|
62 |
+
cursor: not-allowed;
|
63 |
+
opacity: 0.6;
|
64 |
+
}
|
65 |
+
|
66 |
+
.submit:active:not([disabled]), .clear:active:not([disabled]) {
|
67 |
+
transform: scale(0.98);
|
68 |
+
}
|
app.py
CHANGED
@@ -1,110 +1,17 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
response = requests.get(model_url, stream=True)
|
15 |
-
with open(model_path, "wb") as file:
|
16 |
-
for chunk in response.iter_content(chunk_size=8192):
|
17 |
-
file.write(chunk)
|
18 |
-
|
19 |
-
pth_model = torch.jit.load(model_path)
|
20 |
-
pth_model.eval()
|
21 |
-
|
22 |
-
DICT_EMO = {
|
23 |
-
0: "Neutral",
|
24 |
-
1: "Happiness",
|
25 |
-
2: "Sadness",
|
26 |
-
3: "Surprise",
|
27 |
-
4: "Fear",
|
28 |
-
5: "Disgust",
|
29 |
-
6: "Anger",
|
30 |
-
}
|
31 |
-
|
32 |
-
mp_face_mesh = mp.solutions.face_mesh
|
33 |
-
|
34 |
-
|
35 |
-
def pth_processing(fp):
|
36 |
-
class PreprocessInput(torch.nn.Module):
|
37 |
-
def init(self):
|
38 |
-
super(PreprocessInput, self).init()
|
39 |
-
|
40 |
-
def forward(self, x):
|
41 |
-
x = x.to(torch.float32)
|
42 |
-
x = torch.flip(x, dims=(0,))
|
43 |
-
x[0, :, :] -= 91.4953
|
44 |
-
x[1, :, :] -= 103.8827
|
45 |
-
x[2, :, :] -= 131.0912
|
46 |
-
return x
|
47 |
-
|
48 |
-
def get_img_torch(img):
|
49 |
-
ttransform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()])
|
50 |
-
img = img.resize((224, 224), Image.Resampling.NEAREST)
|
51 |
-
img = ttransform(img)
|
52 |
-
img = torch.unsqueeze(img, 0)
|
53 |
-
return img
|
54 |
-
|
55 |
-
return get_img_torch(fp)
|
56 |
-
|
57 |
-
|
58 |
-
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
|
59 |
-
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
|
60 |
-
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
|
61 |
-
|
62 |
-
return x_px, y_px
|
63 |
-
|
64 |
-
|
65 |
-
def get_box(fl, w, h):
|
66 |
-
idx_to_coors = {}
|
67 |
-
for idx, landmark in enumerate(fl.landmark):
|
68 |
-
landmark_px = norm_coordinates(landmark.x, landmark.y, w, h)
|
69 |
-
|
70 |
-
if landmark_px:
|
71 |
-
idx_to_coors[idx] = landmark_px
|
72 |
-
|
73 |
-
x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
|
74 |
-
y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
|
75 |
-
endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
|
76 |
-
endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])
|
77 |
-
|
78 |
-
(startX, startY) = (max(0, x_min), max(0, y_min))
|
79 |
-
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
80 |
-
|
81 |
-
return startX, startY, endX, endY
|
82 |
-
|
83 |
-
|
84 |
-
def predict(inp):
|
85 |
-
inp = np.array(inp)
|
86 |
-
h, w = inp.shape[:2]
|
87 |
-
|
88 |
-
with mp_face_mesh.FaceMesh(
|
89 |
-
max_num_faces=1,
|
90 |
-
refine_landmarks=False,
|
91 |
-
min_detection_confidence=0.5,
|
92 |
-
min_tracking_confidence=0.5,
|
93 |
-
) as face_mesh:
|
94 |
-
results = face_mesh.process(inp)
|
95 |
-
if results.multi_face_landmarks:
|
96 |
-
for fl in results.multi_face_landmarks:
|
97 |
-
startX, startY, endX, endY = get_box(fl, w, h)
|
98 |
-
cur_face = inp[startY:endY, startX:endX]
|
99 |
-
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
100 |
-
prediction = (
|
101 |
-
torch.nn.functional.softmax(pth_model(cur_face_n), dim=1)
|
102 |
-
.detach()
|
103 |
-
.numpy()[0]
|
104 |
-
)
|
105 |
-
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
106 |
-
|
107 |
-
return cur_face, confidences
|
108 |
|
109 |
|
110 |
def clear():
|
@@ -115,60 +22,19 @@ def clear():
|
|
115 |
)
|
116 |
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
height: 350px;
|
121 |
-
max-height: 350px;
|
122 |
-
}
|
123 |
-
|
124 |
-
div.dl2 {
|
125 |
-
max-height: 200px;
|
126 |
-
}
|
127 |
|
128 |
-
div.dl2 img {
|
129 |
-
max-height: 200px;
|
130 |
-
}
|
131 |
-
|
132 |
-
.submit {
|
133 |
-
display: inline-block;
|
134 |
-
padding: 10px 20px;
|
135 |
-
font-size: 16px;
|
136 |
-
font-weight: bold;
|
137 |
-
text-align: center;
|
138 |
-
text-decoration: none;
|
139 |
-
cursor: pointer;
|
140 |
-
border: var(--button-border-width) solid var(--button-primary-border-color);
|
141 |
-
background: var(--button-primary-background-fill);
|
142 |
-
color: var(--button-primary-text-color);
|
143 |
-
border-radius: 8px;
|
144 |
-
transition: all 0.3s ease;
|
145 |
-
}
|
146 |
-
|
147 |
-
.submit[disabled] {
|
148 |
-
cursor: not-allowed;
|
149 |
-
opacity: 0.6;
|
150 |
-
}
|
151 |
-
|
152 |
-
.submit:hover:not([disabled]) {
|
153 |
-
border-color: var(--button-primary-border-color-hover);
|
154 |
-
background: var(--button-primary-background-fill-hover);
|
155 |
-
color: var(--button-primary-text-color-hover);
|
156 |
-
}
|
157 |
-
|
158 |
-
.submit:active:not([disabled]) {
|
159 |
-
transform: scale(0.98);
|
160 |
-
}
|
161 |
-
"""
|
162 |
-
|
163 |
-
with gr.Blocks(css=style) as demo:
|
164 |
with gr.Row():
|
165 |
with gr.Column(scale=2, elem_classes="dl1"):
|
166 |
input_image = gr.Image(type="pil")
|
167 |
with gr.Row():
|
|
|
|
|
|
|
168 |
submit = gr.Button(
|
169 |
value="Submit", interactive=True, scale=1, elem_classes="submit"
|
170 |
)
|
171 |
-
clear_btn = gr.Button(value="Clear", interactive=True, scale=1)
|
172 |
with gr.Column(scale=1, elem_classes="dl4"):
|
173 |
output_image = gr.Image(scale=1, elem_classes="dl2")
|
174 |
output_label = gr.Label(num_top_classes=3, scale=1, elem_classes="dl3")
|
@@ -186,7 +52,7 @@ with gr.Blocks(css=style) as demo:
|
|
186 |
)
|
187 |
|
188 |
submit.click(
|
189 |
-
fn=
|
190 |
inputs=[input_image],
|
191 |
outputs=[output_image, output_label],
|
192 |
queue=True,
|
@@ -194,11 +60,7 @@ with gr.Blocks(css=style) as demo:
|
|
194 |
clear_btn.click(
|
195 |
fn=clear,
|
196 |
inputs=[],
|
197 |
-
outputs=[
|
198 |
-
input_image,
|
199 |
-
output_image,
|
200 |
-
output_label,
|
201 |
-
],
|
202 |
queue=True,
|
203 |
)
|
204 |
|
|
|
1 |
+
"""
|
2 |
+
File: app.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: Description: Main application file for Facial_Expression_Recognition.
|
5 |
+
The file defines the Gradio interface, sets up the main blocks,
|
6 |
+
and includes event handlers for various components.
|
7 |
+
License: MIT License
|
8 |
+
"""
|
9 |
|
10 |
import gradio as gr
|
11 |
|
12 |
+
# Importing necessary components for the Gradio app
|
13 |
+
from app.description import DESCRIPTION
|
14 |
+
from app.app_utils import preprocess_and_predict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
def clear():
|
|
|
22 |
)
|
23 |
|
24 |
|
25 |
+
with gr.Blocks(css="app.css") as demo:
|
26 |
+
gr.Markdown(value=DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
with gr.Row():
|
29 |
with gr.Column(scale=2, elem_classes="dl1"):
|
30 |
input_image = gr.Image(type="pil")
|
31 |
with gr.Row():
|
32 |
+
clear_btn = gr.Button(
|
33 |
+
value="Clear", interactive=True, scale=1, elem_classes="clear"
|
34 |
+
)
|
35 |
submit = gr.Button(
|
36 |
value="Submit", interactive=True, scale=1, elem_classes="submit"
|
37 |
)
|
|
|
38 |
with gr.Column(scale=1, elem_classes="dl4"):
|
39 |
output_image = gr.Image(scale=1, elem_classes="dl2")
|
40 |
output_label = gr.Label(num_top_classes=3, scale=1, elem_classes="dl3")
|
|
|
52 |
)
|
53 |
|
54 |
submit.click(
|
55 |
+
fn=preprocess_and_predict,
|
56 |
inputs=[input_image],
|
57 |
outputs=[output_image, output_label],
|
58 |
queue=True,
|
|
|
60 |
clear_btn.click(
|
61 |
fn=clear,
|
62 |
inputs=[],
|
63 |
+
outputs=[input_image, output_image, output_label],
|
|
|
|
|
|
|
|
|
64 |
queue=True,
|
65 |
)
|
66 |
|
app/__init__.py
ADDED
File without changes
|
app/app_utils.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: app_utils.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: This module contains utility functions for facial expression recognition application.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
import mediapipe as mp
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
# Importing necessary components for the Gradio app
|
14 |
+
from app.model import pth_model, pth_processing
|
15 |
+
from app.face_utils import get_box
|
16 |
+
from app.config import DICT_EMO
|
17 |
+
|
18 |
+
|
19 |
+
mp_face_mesh = mp.solutions.face_mesh
|
20 |
+
|
21 |
+
|
22 |
+
def preprocess_and_predict(inp):
|
23 |
+
inp = np.array(inp)
|
24 |
+
|
25 |
+
if inp is None:
|
26 |
+
return None, None
|
27 |
+
|
28 |
+
try:
|
29 |
+
h, w = inp.shape[:2]
|
30 |
+
except Exception:
|
31 |
+
return None, None
|
32 |
+
|
33 |
+
with mp_face_mesh.FaceMesh(
|
34 |
+
max_num_faces=1,
|
35 |
+
refine_landmarks=False,
|
36 |
+
min_detection_confidence=0.5,
|
37 |
+
min_tracking_confidence=0.5,
|
38 |
+
) as face_mesh:
|
39 |
+
results = face_mesh.process(inp)
|
40 |
+
if results.multi_face_landmarks:
|
41 |
+
for fl in results.multi_face_landmarks:
|
42 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
43 |
+
cur_face = inp[startY:endY, startX:endX]
|
44 |
+
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
45 |
+
prediction = (
|
46 |
+
torch.nn.functional.softmax(pth_model(cur_face_n), dim=1)
|
47 |
+
.detach()
|
48 |
+
.numpy()[0]
|
49 |
+
)
|
50 |
+
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
51 |
+
|
52 |
+
return cur_face, confidences
|
app/config.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: config.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: Configuration file.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import toml
|
9 |
+
from typing import Dict
|
10 |
+
from types import SimpleNamespace
|
11 |
+
|
12 |
+
|
13 |
+
def flatten_dict(prefix: str, d: Dict) -> Dict:
|
14 |
+
result = {}
|
15 |
+
|
16 |
+
for k, v in d.items():
|
17 |
+
if isinstance(v, dict):
|
18 |
+
result.update(flatten_dict(f"{prefix}{k}_", v))
|
19 |
+
else:
|
20 |
+
result[f"{prefix}{k}"] = v
|
21 |
+
|
22 |
+
return result
|
23 |
+
|
24 |
+
|
25 |
+
config = toml.load("config.toml")
|
26 |
+
|
27 |
+
config_data = flatten_dict("", config)
|
28 |
+
|
29 |
+
config_data = SimpleNamespace(**config_data)
|
30 |
+
|
31 |
+
DICT_EMO = {
|
32 |
+
0: "Neutral",
|
33 |
+
1: "Happiness",
|
34 |
+
2: "Sadness",
|
35 |
+
3: "Surprise",
|
36 |
+
4: "Fear",
|
37 |
+
5: "Disgust",
|
38 |
+
6: "Anger",
|
39 |
+
}
|
app/description.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: description.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: Project description for the Gradio app.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
# Importing necessary components for the Gradio app
|
9 |
+
from app.config import config_data
|
10 |
+
|
11 |
+
DESCRIPTION = f"""\
|
12 |
+
# Facial_Expression_Recognition
|
13 |
+
<div class="app-flex-container">
|
14 |
+
<img src="https://img.shields.io/badge/version-v{config_data.APP_VERSION}-rc0" alt="Version">
|
15 |
+
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition&countColor=%23263759&style=flat" /></a>
|
16 |
+
</div>
|
17 |
+
"""
|
app/face_utils.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: face_utils.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: This module contains utility functions related to facial landmarks and image processing.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import math
|
10 |
+
|
11 |
+
|
12 |
+
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
|
13 |
+
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
|
14 |
+
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
|
15 |
+
return x_px, y_px
|
16 |
+
|
17 |
+
|
18 |
+
def get_box(fl, w, h):
|
19 |
+
idx_to_coors = {}
|
20 |
+
for idx, landmark in enumerate(fl.landmark):
|
21 |
+
landmark_px = norm_coordinates(landmark.x, landmark.y, w, h)
|
22 |
+
if landmark_px:
|
23 |
+
idx_to_coors[idx] = landmark_px
|
24 |
+
|
25 |
+
x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
|
26 |
+
y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
|
27 |
+
endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
|
28 |
+
endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])
|
29 |
+
|
30 |
+
(startX, startY) = (max(0, x_min), max(0, y_min))
|
31 |
+
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
32 |
+
|
33 |
+
return startX, startY, endX, endY
|
app/model.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: model.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: This module provides functions for loading and processing a pre-trained deep learning model
|
5 |
+
for facial expression recognition.
|
6 |
+
License: MIT License
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import requests
|
11 |
+
from PIL import Image
|
12 |
+
from torchvision import transforms
|
13 |
+
|
14 |
+
# Importing necessary components for the Gradio app
|
15 |
+
from app.config import config_data
|
16 |
+
|
17 |
+
|
18 |
+
def load_model(model_url, model_path):
|
19 |
+
try:
|
20 |
+
# Загрузка модели
|
21 |
+
with requests.get(model_url, stream=True) as response:
|
22 |
+
with open(model_path, "wb") as file:
|
23 |
+
for chunk in response.iter_content(chunk_size=8192):
|
24 |
+
file.write(chunk)
|
25 |
+
return torch.jit.load(model_path).eval()
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error loading model: {e}")
|
28 |
+
return None
|
29 |
+
|
30 |
+
|
31 |
+
# Загрузите модель
|
32 |
+
pth_model = load_model(config_data.model_url, config_data.model_path)
|
33 |
+
|
34 |
+
|
35 |
+
def pth_processing(fp):
|
36 |
+
class PreprocessInput(torch.nn.Module):
|
37 |
+
def init(self):
|
38 |
+
super(PreprocessInput, self).init()
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
x = x.to(torch.float32)
|
42 |
+
x = torch.flip(x, dims=(0,))
|
43 |
+
x[0, :, :] -= 91.4953
|
44 |
+
x[1, :, :] -= 103.8827
|
45 |
+
x[2, :, :] -= 131.0912
|
46 |
+
return x
|
47 |
+
|
48 |
+
def get_img_torch(img, target_size=(224, 224)):
|
49 |
+
transform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()])
|
50 |
+
img = img.resize(target_size, Image.Resampling.NEAREST)
|
51 |
+
img = transform(img)
|
52 |
+
img = torch.unsqueeze(img, 0)
|
53 |
+
return img
|
54 |
+
|
55 |
+
return get_img_torch(fp)
|
config.toml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
APP_VERSION = "0.1.0"
|
2 |
+
|
3 |
+
[model]
|
4 |
+
url = "https://huggingface.co/ElenaRyumina/face_emotion_recognition/resolve/main/FER_static_ResNet50_AffectNet.pth"
|
5 |
+
path = "FER_static_ResNet50_AffectNet.pth"
|
requirements.txt
CHANGED
@@ -3,5 +3,5 @@ requests==2.31.0
|
|
3 |
torch==2.1.2
|
4 |
torchaudio==2.1.2
|
5 |
torchvision==0.16.2
|
6 |
-
mediapipe==0.9
|
7 |
pillow==10.2.0
|
|
|
3 |
torch==2.1.2
|
4 |
torchaudio==2.1.2
|
5 |
torchvision==0.16.2
|
6 |
+
mediapipe==0.10.9
|
7 |
pillow==10.2.0
|