Spaces:
Sleeping
Sleeping
File size: 1,586 Bytes
79f29a1 0cf3363 44608bc b88cd09 0cf3363 b88cd09 0cf3363 b88cd09 0cf3363 b88cd09 0cf3363 b88cd09 0cf3363 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
# Object Detection
import streamlit as st
from huggingface_hub import hf_hub_download
from transformers import AutoImageProcessor, TableTransformerForObjectDetection
import torch
from PIL import Image
# Model and Image Processor Loading (ideally at the app start)
@st.cache_resource
def load_assets():
file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png")
image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection")
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection")
return file_path, image_processor, model
file_path, image_processor, model = load_assets()
# App Title
st.title("Table Detection in Images")
# Image Upload
uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
# Process Image and Display Results
if uploaded_file:
image = Image.open(uploaded_file).convert("RGB")
inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0]
st.image(image) # Display the uploaded image
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
st.write(
f"Detected {model.config.id2label[label.item()]} with confidence "
f"{round(score.item(), 3)} at location {box}"
) |