Spaces:
Build error
Build error
license: cc-by-nc-4.0 | |
tags: | |
- generated_from_trainer | |
- instruction fine-tuning | |
model-index: | |
- name: flan-t5-small-distil-v2 | |
results: [] | |
language: | |
- en | |
pipeline_tag: text2text-generation | |
widget: | |
- text: >- | |
how can I become more healthy? | |
example_title: example | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
<p align="center" width="100%"> | |
<a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini.png" alt="Title" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a> | |
</p> | |
# LaMini-Flan-T5-783M | |
[]() | |
This model is one of our LaMini-LM model series in paper "[LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions](https://github.com/mbzuai-nlp/lamini-lm)". This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction) that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository](https://github.com/mbzuai-nlp/lamini-lm/). | |
You can view other models of LaMini-LM series as follows. Models with ✩ are those with the best overall performance given their size/architecture, hence we recommend using them. More details can be seen in our paper. | |
<table> | |
<thead> | |
<tr> | |
<th>Base model</th> | |
<th colspan="4">LaMini-LM series (#parameters)</th> | |
</tr> | |
</thead> | |
<tbody> | |
<tr> | |
<td>T5</td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-t5-61m" target="_blank" rel="noopener noreferrer">LaMini-T5-61M</a></td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-t5-223m" target="_blank" rel="noopener noreferrer">LaMini-T5-223M</a></td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-t5-738m" target="_blank" rel="noopener noreferrer">LaMini-T5-738M</a></td> | |
<td></td> | |
</tr> | |
<tr> | |
<td>Flan-T5</td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-77m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-77M</a>✩</td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-248m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-248M</a>✩</td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-783m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-783M</a>✩</td> | |
<td></td> | |
</tr> | |
<tr> | |
<td>Cerebras-GPT</td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-111m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-111M</a></td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-256m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-256M</a></td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-590m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-590M</a></td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-1.3B</a></td> | |
</tr> | |
<tr> | |
<td>GPT-2</td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a>✩</td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a>✩</td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a>✩</td> | |
<td></td> | |
</tr> | |
<tr> | |
<td>GPT-Neo</td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-neo-125m" target="_blank" rel="noopener noreferrer">LaMini-Neo-125M</a></td> | |
<td><a href="https://huggingface.co/MBZUAI/lamini-neo-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Neo-1.3B</a></td> | |
<td></td> | |
<td></td> | |
</tr> | |
<tr> | |
<td>GPT-J</td> | |
<td colspan="4">coming soon</td> | |
</tr> | |
<tr> | |
<td>LLaMA</td> | |
<td colspan="4">coming soon</td> | |
</tr> | |
</tbody> | |
</table> | |
## Use | |
### Intended use | |
We recommend using the model to response to human instructions written in natural language. | |
We now show you how to load and use our model using HuggingFace `pipeline()`. | |
```python | |
# pip install -q transformers | |
from transformers import pipeline | |
checkpoint = "{model_name}" | |
model = pipeline('text2text-generation', model = checkpoint) | |
input_prompt = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"' | |
generated_text = model(input_prompt, max_length=512, do_sample=True)[0]['generated_text'] | |
print("Response", generated_text) | |
``` | |
## Training Procedure | |
<p align="center" width="100%"> | |
<a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini-pipeline.drawio.png" alt="Title" style="width: 100%; min-width: 250px; display: block; margin: auto;"></a> | |
</p> | |
We initialize with [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) and fine-tune it on our [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction). Its total number of parameters is 783M. | |
### Training Hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 0.0005 | |
- train_batch_size: 128 | |
- eval_batch_size: 64 | |
- seed: 42 | |
- gradient_accumulation_steps: 4 | |
- total_train_batch_size: 512 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 5 | |
## Evaluation | |
We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper](). | |
## Limitations | |
More information needed | |
# Citation | |
```bibtex | |
@article{lamini-lm, | |
author = {Minghao Wu and | |
Abdul Waheed and | |
Chiyu Zhang and | |
Muhammad Abdul-Mageed and | |
Alham Fikri Aji | |
}, | |
title = {LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions}, | |
journal = {CoRR}, | |
volume = {abs/2304.14402}, | |
year = {2023}, | |
url = {https://arxiv.org/abs/2304.14402}, | |
eprinttype = {arXiv}, | |
eprint = {2304.14402} | |
} | |
``` |