File size: 2,404 Bytes
6da0fd1
2b9a300
 
6da0fd1
2b9a300
 
 
 
 
 
 
 
 
 
 
 
 
6da0fd1
 
 
cb193e7
ca6013c
 
bba1f1f
6da0fd1
ca6013c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b9a300
 
 
ca6013c
2b9a300
 
 
 
ca6013c
2b9a300
 
 
 
 
 
ca6013c
2b9a300
ca6013c
c33fb07
 
ca6013c
2b9a300
 
 
 
 
 
ca6013c
2b9a300
ca6013c
2b9a300
ca6013c
 
 
 
 
2b9a300
 
ca6013c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from langchain.document_loaders import DirectoryLoader
from langchain.text_splitter import CharacterTextSplitter
import os
import pinecone
from langchain.vectorstores import Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
import streamlit as st
from dotenv import load_dotenv

load_dotenv()
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
PINECONE_ENV = os.getenv('PINECONE_ENV')
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY

@st.cache_resource
def embedding_db():
    embeddings = OpenAIEmbeddings()
    pc = pinecone.init(
        api_key=PINECONE_API_KEY,
        environment=PINECONE_ENV
    )

    # Check if index exists, create if needed
    if 'langchain-demo-indexes' not in pc.list_indexes().names():
        pc.create_index(
            name='langchain-demo-indexes',
            dimension=1536, # Adjust dimension if needed
            metric='euclidean'        
        )

    docs_split = doc_preprocessing()  # Make sure this function is defined
    doc_db = Pinecone.from_documents(
        docs_split,
        embeddings,
        index_name='langchain-demo-indexes',
        client=pc
    )
    return doc_db

def doc_preprocessing():
    loader = DirectoryLoader(
        'data/',
        glob='**/*.pdf', 
        show_progress=True
    )
    docs = loader.load()
    text_splitter = CharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=0
    )
    docs_split = text_splitter.split_documents(docs)
    return docs_split

def retrieval_answer(query):
    chat_model = ChatOpenAI() 
    qa = RetrievalQA.from_chain_type(
        llm=chat_model,   
        chain_type='stuff',
        retriever=doc_db.as_retriever(),
    )   
    result = qa.run(query)
    return result

def main():
    st.title("Question and Answering App powered by LLM and Pinecone")
    text_input = st.text_input("Ask your query...") 

    if st.button("Ask Query"):
        if len(text_input) > 0:
            st.info("Your Query: " + text_input)

            # Potential loading message
            with st.spinner("Processing your query..."):
                doc_db = embedding_db()  # Create the embedding database
                answer = retrieval_answer(text_input)
            st.success(answer)

if __name__ == "__main__":    
    main()