File size: 5,364 Bytes
7388333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import streamlit as st
import time
from autism_chatbot import *

class StreamHandler:
    def __init__(self, placeholder):
        self.text = ""
        self.text_container = placeholder

    def append_text(self, text: str) -> None:
        self.text += text
        self.text_container.markdown(self.text)

class StreamingGroqLLM(GroqLLM):
    stream_handler: Any = Field(None, description="Stream handler for real-time output")

    def _call(self, prompt: str, stop: Optional[List[str]] = None, **kwargs: Any) -> str:
        completion = self.client.chat.completions.create(
            messages=[{"role": "user", "content": prompt}],
            model=self.model_name,
            stream=True,
            **kwargs
        )
        
        collected_chunks = []
        collected_messages = []

        for chunk in completion:
            chunk_message = chunk.choices[0].delta.content
            if chunk_message is not None:
                collected_chunks.append(chunk_message)
                collected_messages.append(chunk_message)
                if self.stream_handler:
                    self.stream_handler.append_text(chunk_message)
                    time.sleep(0.05)

        return ''.join(collected_messages)

class StreamingAutismResearchBot(AutismResearchBot):
    def __init__(self, groq_api_key: str, stream_handler: StreamHandler, index_path: str = "index.faiss"):
        self.llm = StreamingGroqLLM(
            groq_api_key=groq_api_key,
            model_name="llama-3.3-70b-versatile",
            stream_handler=stream_handler
        )
        
        self.embeddings = HuggingFaceEmbeddings(
            model_name="pritamdeka/S-PubMedBert-MS-MARCO",
            model_kwargs={'device': 'cpu'}
        )
        self.db = FAISS.load_local("./", self.embeddings, allow_dangerous_deserialization=True)
        
        self.memory = ConversationBufferMemory(
            memory_key="chat_history",
            return_messages=True,
            output_key="answer"
        )
        
        self.qa_chain = self._create_qa_chain()

def main():
    # Page configuration
    st.set_page_config(
        page_title="Autism Research Assistant",
        page_icon="🧩",
        layout="wide"
    )

    # Add custom CSS
    st.markdown("""
        <style>
        .stApp {
            max-width: 1200px;
            margin: 0 auto;
        }
        .stMarkdown {
            font-size: 16px;
        }
        .chat-message {
            padding: 1rem;
            border-radius: 0.5rem;
            margin-bottom: 1rem;
        }
        .timestamp {
            font-size: 0.8em;
            color: #666;
        }
        </style>
    """, unsafe_allow_html=True)

    # Header
    st.title("🧩 Autism Research Assistant")
    st.markdown("""
    Welcome to your AI-powered autism research assistant. I'm here to provide evidence-based 
    assessments and therapy recommendations based on scientific research.
    """)

    # Initialize session state
    if 'messages' not in st.session_state:
        st.session_state.messages = [
            {"role": "assistant", "content": "Hello! I'm your autism research assistant. How can I help you today?"}
        ]

    # Initialize bot
    if 'bot' not in st.session_state:
        st.session_state.stream_container = None
        st.session_state.bot = None

    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(f"{message['content']}")
            st.caption(f"{time.strftime('%I:%M %p')}")

    # Chat input
    if prompt := st.chat_input("Type your message here..."):
        # Display user message
        with st.chat_message("user"):
            st.write(prompt)
            st.caption(f"{time.strftime('%I:%M %p')}")
        
        # Add to session state
        st.session_state.messages.append({"role": "user", "content": prompt})

        # Create a new chat message container for the assistant's response
        assistant_message = st.chat_message("assistant")
        with assistant_message:
            # Create a placeholder for the streaming text
            stream_placeholder = st.empty()
            
            # Initialize the bot with the new stream handler if not already initialized
            if st.session_state.bot is None:
                stream_handler = StreamHandler(stream_placeholder)
                st.session_state.bot = StreamingAutismResearchBot(
                    groq_api_key= os.environ.get("GROQ_API_KEY"),
                    stream_handler=stream_handler,
                )
            else:
                # Update the stream handler with the new placeholder
                st.session_state.bot.llm.stream_handler.text = ""
                st.session_state.bot.llm.stream_handler.text_container = stream_placeholder

            # Generate response
            response = st.session_state.bot.answer_question(prompt)
            
            # Clear the streaming placeholder and display the final message
            stream_placeholder.empty()
            st.write(response['answer'])
            st.caption(f"{time.strftime('%I:%M %p')}")
            
        # Add bot response to session state
        st.session_state.messages.append({"role": "assistant", "content": response['answer']})

if __name__ == "__main__":
    main()