File size: 1,043 Bytes
91f550a
 
 
 
 
 
 
 
 
25f5977
 
91f550a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import gradio as gr

# Load data
nexus_bank = pd.read_csv('C:/Users/IT zone computer/nexus_bank_dataa.csv')


# Preprocessing
X = nexus_bank[['salary', 'dependents']]
y = nexus_bank['defaulter']

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=90)

# Model training
knn_classifier = KNeighborsClassifier()
knn_classifier.fit(X_train, y_train)

# Prediction function
def predict_defaulter(salary, dependents):
    input_data = [[salary, dependents]]
    knn_predict = knn_classifier.predict(input_data)
    return "Yes! It's a Defaulter" if knn_predict[0] == 1 else "No! It's not a Defaulter"

# Interface
interface = gr.Interface(
    fn=predict_defaulter,
    inputs=["number", "number"],
    outputs="text",
    title="Defaulter Prediction"
)

# Launch the interface
interface.launch()