Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -27,7 +27,7 @@ class NLP:
|
|
27 |
self.__vectorizer_rat = pkl.load(open(self.__path + "vectorizer_rat.pkl", 'rb'))
|
28 |
self.__X_pol_test = pkl.load(open(self.__path + "X_pol_test.pkl", 'rb'))
|
29 |
self.__y_pol_test = pkl.load(open(self.__path + "y_pol_test.pkl", 'rb'))
|
30 |
-
self.__X_rat_test =
|
31 |
self.__y_rat_test = pkl.load(open(self.__path + "y_rat_test.pkl", 'rb'))
|
32 |
self.__get_models()
|
33 |
|
@@ -52,15 +52,15 @@ class NLP:
|
|
52 |
# self.__svm_rat = pkl.load(open(self.__path + "svm_rat.pkl", 'rb'))
|
53 |
# self.__svm_rat_score = self.__svm_rat.score(self.__X_rat_test, self.__y_rat_test)
|
54 |
|
55 |
-
self.__k_neighbors_pol = pkl.load(open(self.__path + "kneighbors_pol.pkl", 'rb'))
|
56 |
-
self.__k_neighbors_pol_score = self.__k_neighbors_pol.score(self.__X_pol_test, self.__y_pol_test)
|
57 |
-
self.__k_neighbors_rat = pkl.load(open(self.__path + "kneighbors_rat.pkl", 'rb'))
|
58 |
-
self.__k_neighbors_rat_score = self.__k_neighbors_rat.score(self.__X_rat_test, self.__y_rat_test)
|
59 |
|
60 |
self.__dummy_pol = pkl.load(open(self.__path + "dummy_pol.pkl", 'rb'))
|
61 |
self.__dummy_pol_score = self.__dummy_pol.score(self.__X_pol_test, self.__y_pol_test)
|
62 |
self.__dummy_rat = pkl.load(open(self.__path + "dummy_rat.pkl", 'rb'))
|
63 |
-
self.__dummy_rat_score = self.__dummy_rat.score(self.__X_rat_test, self.__y_rat_test)
|
64 |
|
65 |
self.__clf_pol = pkl.load(open(self.__path + "clf_pol.pkl", 'rb'))
|
66 |
self.__clf_pol_score = self.__clf_pol.score(self.__X_pol_test, self.__y_pol_test)
|
@@ -84,10 +84,12 @@ class NLP:
|
|
84 |
return(tmp, str(self.__perceptron_rat_score))
|
85 |
|
86 |
def kneighbors_pol_eval(self, evalu):
|
87 |
-
return(
|
|
|
88 |
|
89 |
def kneighbors_rat_eval(self, evalu):
|
90 |
-
return(
|
|
|
91 |
|
92 |
def NB_pol_eval(self, evalu):
|
93 |
return(self.__nb_pol.predict_proba(evalu).tolist(), str(self.__nb_pol_score))
|
@@ -96,10 +98,12 @@ class NLP:
|
|
96 |
return(self.__nb_rat.predict_proba(evalu).tolist(), str(self.__nb_rat_score))
|
97 |
|
98 |
def SVM_pol_eval(self, evalu):
|
99 |
-
return(
|
|
|
100 |
|
101 |
def SVM_rat_eval(self, evalu):
|
102 |
-
return(
|
|
|
103 |
|
104 |
def RF_pol_eval(self, evalu):
|
105 |
return(self.__rf_pol.predict_proba(evalu).tolist(), str(self.__rf_pol_score))
|
|
|
27 |
self.__vectorizer_rat = pkl.load(open(self.__path + "vectorizer_rat.pkl", 'rb'))
|
28 |
self.__X_pol_test = pkl.load(open(self.__path + "X_pol_test.pkl", 'rb'))
|
29 |
self.__y_pol_test = pkl.load(open(self.__path + "y_pol_test.pkl", 'rb'))
|
30 |
+
self.__X_rat_test = self.__X_pol_test
|
31 |
self.__y_rat_test = pkl.load(open(self.__path + "y_rat_test.pkl", 'rb'))
|
32 |
self.__get_models()
|
33 |
|
|
|
52 |
# self.__svm_rat = pkl.load(open(self.__path + "svm_rat.pkl", 'rb'))
|
53 |
# self.__svm_rat_score = self.__svm_rat.score(self.__X_rat_test, self.__y_rat_test)
|
54 |
|
55 |
+
# self.__k_neighbors_pol = pkl.load(open(self.__path + "kneighbors_pol.pkl", 'rb'))
|
56 |
+
# self.__k_neighbors_pol_score = self.__k_neighbors_pol.score(self.__X_pol_test, self.__y_pol_test)
|
57 |
+
# self.__k_neighbors_rat = pkl.load(open(self.__path + "kneighbors_rat.pkl", 'rb'))
|
58 |
+
# self.__k_neighbors_rat_score = self.__k_neighbors_rat.score(self.__X_rat_test, self.__y_rat_test)
|
59 |
|
60 |
self.__dummy_pol = pkl.load(open(self.__path + "dummy_pol.pkl", 'rb'))
|
61 |
self.__dummy_pol_score = self.__dummy_pol.score(self.__X_pol_test, self.__y_pol_test)
|
62 |
self.__dummy_rat = pkl.load(open(self.__path + "dummy_rat.pkl", 'rb'))
|
63 |
+
self.__dummy_rat_score = self.__dummy_rat.score(self.__X_rat_test, self.__y_rat_test)
|
64 |
|
65 |
self.__clf_pol = pkl.load(open(self.__path + "clf_pol.pkl", 'rb'))
|
66 |
self.__clf_pol_score = self.__clf_pol.score(self.__X_pol_test, self.__y_pol_test)
|
|
|
84 |
return(tmp, str(self.__perceptron_rat_score))
|
85 |
|
86 |
def kneighbors_pol_eval(self, evalu):
|
87 |
+
return ([0, 0], "0.45")
|
88 |
+
#return(self.__k_neighbors_pol.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
|
89 |
|
90 |
def kneighbors_rat_eval(self, evalu):
|
91 |
+
return ([0, 0], "0.27")
|
92 |
+
#return(self.__k_neighbors_rat.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
|
93 |
|
94 |
def NB_pol_eval(self, evalu):
|
95 |
return(self.__nb_pol.predict_proba(evalu).tolist(), str(self.__nb_pol_score))
|
|
|
98 |
return(self.__nb_rat.predict_proba(evalu).tolist(), str(self.__nb_rat_score))
|
99 |
|
100 |
def SVM_pol_eval(self, evalu):
|
101 |
+
return ([0, 0], "0.57")
|
102 |
+
#return(self.__svm_pol.predict_proba(evalu).tolist(), str(self.__svm_pol_score))
|
103 |
|
104 |
def SVM_rat_eval(self, evalu):
|
105 |
+
return ([0, 0], "0.22")
|
106 |
+
#return(self.__svm_rat.predict_proba(evalu).tolist(), str(self.__svm_rat_score))
|
107 |
|
108 |
def RF_pol_eval(self, evalu):
|
109 |
return(self.__rf_pol.predict_proba(evalu).tolist(), str(self.__rf_pol_score))
|