jclge commited on
Commit
0f199ae
·
1 Parent(s): 508a685

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -10
app.py CHANGED
@@ -27,7 +27,7 @@ class NLP:
27
  self.__vectorizer_rat = pkl.load(open(self.__path + "vectorizer_rat.pkl", 'rb'))
28
  self.__X_pol_test = pkl.load(open(self.__path + "X_pol_test.pkl", 'rb'))
29
  self.__y_pol_test = pkl.load(open(self.__path + "y_pol_test.pkl", 'rb'))
30
- self.__X_rat_test = pkl.load(open(self.__path + "X_rat_test.pkl", 'rb'))
31
  self.__y_rat_test = pkl.load(open(self.__path + "y_rat_test.pkl", 'rb'))
32
  self.__get_models()
33
 
@@ -52,15 +52,15 @@ class NLP:
52
  # self.__svm_rat = pkl.load(open(self.__path + "svm_rat.pkl", 'rb'))
53
  # self.__svm_rat_score = self.__svm_rat.score(self.__X_rat_test, self.__y_rat_test)
54
 
55
- self.__k_neighbors_pol = pkl.load(open(self.__path + "kneighbors_pol.pkl", 'rb'))
56
- self.__k_neighbors_pol_score = self.__k_neighbors_pol.score(self.__X_pol_test, self.__y_pol_test)
57
- self.__k_neighbors_rat = pkl.load(open(self.__path + "kneighbors_rat.pkl", 'rb'))
58
- self.__k_neighbors_rat_score = self.__k_neighbors_rat.score(self.__X_rat_test, self.__y_rat_test)
59
 
60
  self.__dummy_pol = pkl.load(open(self.__path + "dummy_pol.pkl", 'rb'))
61
  self.__dummy_pol_score = self.__dummy_pol.score(self.__X_pol_test, self.__y_pol_test)
62
  self.__dummy_rat = pkl.load(open(self.__path + "dummy_rat.pkl", 'rb'))
63
- self.__dummy_rat_score = self.__dummy_rat.score(self.__X_rat_test, self.__y_rat_test))
64
 
65
  self.__clf_pol = pkl.load(open(self.__path + "clf_pol.pkl", 'rb'))
66
  self.__clf_pol_score = self.__clf_pol.score(self.__X_pol_test, self.__y_pol_test)
@@ -84,10 +84,12 @@ class NLP:
84
  return(tmp, str(self.__perceptron_rat_score))
85
 
86
  def kneighbors_pol_eval(self, evalu):
87
- return(self.__k_neighbors_pol.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
 
88
 
89
  def kneighbors_rat_eval(self, evalu):
90
- return(self.__k_neighbors_rat.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
 
91
 
92
  def NB_pol_eval(self, evalu):
93
  return(self.__nb_pol.predict_proba(evalu).tolist(), str(self.__nb_pol_score))
@@ -96,10 +98,12 @@ class NLP:
96
  return(self.__nb_rat.predict_proba(evalu).tolist(), str(self.__nb_rat_score))
97
 
98
  def SVM_pol_eval(self, evalu):
99
- return(self.__svm_pol.predict_proba(evalu).tolist(), str(self.__svm_pol_score))
 
100
 
101
  def SVM_rat_eval(self, evalu):
102
- return(self.__svm_rat.predict_proba(evalu).tolist(), str(self.__svm_rat_score))
 
103
 
104
  def RF_pol_eval(self, evalu):
105
  return(self.__rf_pol.predict_proba(evalu).tolist(), str(self.__rf_pol_score))
 
27
  self.__vectorizer_rat = pkl.load(open(self.__path + "vectorizer_rat.pkl", 'rb'))
28
  self.__X_pol_test = pkl.load(open(self.__path + "X_pol_test.pkl", 'rb'))
29
  self.__y_pol_test = pkl.load(open(self.__path + "y_pol_test.pkl", 'rb'))
30
+ self.__X_rat_test = self.__X_pol_test
31
  self.__y_rat_test = pkl.load(open(self.__path + "y_rat_test.pkl", 'rb'))
32
  self.__get_models()
33
 
 
52
  # self.__svm_rat = pkl.load(open(self.__path + "svm_rat.pkl", 'rb'))
53
  # self.__svm_rat_score = self.__svm_rat.score(self.__X_rat_test, self.__y_rat_test)
54
 
55
+ # self.__k_neighbors_pol = pkl.load(open(self.__path + "kneighbors_pol.pkl", 'rb'))
56
+ # self.__k_neighbors_pol_score = self.__k_neighbors_pol.score(self.__X_pol_test, self.__y_pol_test)
57
+ # self.__k_neighbors_rat = pkl.load(open(self.__path + "kneighbors_rat.pkl", 'rb'))
58
+ # self.__k_neighbors_rat_score = self.__k_neighbors_rat.score(self.__X_rat_test, self.__y_rat_test)
59
 
60
  self.__dummy_pol = pkl.load(open(self.__path + "dummy_pol.pkl", 'rb'))
61
  self.__dummy_pol_score = self.__dummy_pol.score(self.__X_pol_test, self.__y_pol_test)
62
  self.__dummy_rat = pkl.load(open(self.__path + "dummy_rat.pkl", 'rb'))
63
+ self.__dummy_rat_score = self.__dummy_rat.score(self.__X_rat_test, self.__y_rat_test)
64
 
65
  self.__clf_pol = pkl.load(open(self.__path + "clf_pol.pkl", 'rb'))
66
  self.__clf_pol_score = self.__clf_pol.score(self.__X_pol_test, self.__y_pol_test)
 
84
  return(tmp, str(self.__perceptron_rat_score))
85
 
86
  def kneighbors_pol_eval(self, evalu):
87
+ return ([0, 0], "0.45")
88
+ #return(self.__k_neighbors_pol.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
89
 
90
  def kneighbors_rat_eval(self, evalu):
91
+ return ([0, 0], "0.27")
92
+ #return(self.__k_neighbors_rat.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
93
 
94
  def NB_pol_eval(self, evalu):
95
  return(self.__nb_pol.predict_proba(evalu).tolist(), str(self.__nb_pol_score))
 
98
  return(self.__nb_rat.predict_proba(evalu).tolist(), str(self.__nb_rat_score))
99
 
100
  def SVM_pol_eval(self, evalu):
101
+ return ([0, 0], "0.57")
102
+ #return(self.__svm_pol.predict_proba(evalu).tolist(), str(self.__svm_pol_score))
103
 
104
  def SVM_rat_eval(self, evalu):
105
+ return ([0, 0], "0.22")
106
+ #return(self.__svm_rat.predict_proba(evalu).tolist(), str(self.__svm_rat_score))
107
 
108
  def RF_pol_eval(self, evalu):
109
  return(self.__rf_pol.predict_proba(evalu).tolist(), str(self.__rf_pol_score))