Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import numpy as np | |
import spaces | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
from utils import utils, tools, preprocess | |
VAE_PATH = "madebyollin/sdxl-vae-fp16-fix" | |
REPO_ID = "Pbihao/ControlNeXt" | |
UNET_FILENAME = "ControlAny-SDXL/anime_canny/unet.safetensors" | |
CONTROLNET_FILENAME = "ControlAny-SDXL/anime_canny/controlnet.safetensors" | |
CACHE_DIR = None | |
DEFAULT_PROMPT = "" | |
DEFAULT_NEGATIVE_PROMPT = "worst quality, abstract, clumsy pose, deformed hand, dynamic malformation, fused fingers, extra digits, fewer digits, fewer fingers, extra fingers, extra arm, missing arm, extra leg, missing leg, signature, artist name, multi views, disfigured, ugly" | |
def ui(): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_file = hf_hub_download( | |
repo_id='neta-art/neta-xl-2.0', | |
filename='neta-xl-v2.fp16.safetensors', | |
cache_dir=CACHE_DIR, | |
) | |
unet_file = hf_hub_download( | |
repo_id=REPO_ID, | |
filename=UNET_FILENAME, | |
cache_dir=CACHE_DIR, | |
) | |
controlnet_file = hf_hub_download( | |
repo_id=REPO_ID, | |
filename=CONTROLNET_FILENAME, | |
cache_dir=CACHE_DIR, | |
) | |
pipeline = tools.get_pipeline( | |
pretrained_model_name_or_path=model_file, | |
unet_model_name_or_path=unet_file, | |
controlnet_model_name_or_path=controlnet_file, | |
vae_model_name_or_path=VAE_PATH, | |
load_weight_increasement=True, | |
device=device, | |
hf_cache_dir=CACHE_DIR, | |
use_safetensors=True, | |
) | |
preprocessors = ['canny'] | |
schedulers = ['Euler A', 'UniPC', 'Euler', 'DDIM', 'DDPM'] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(f""" | |
# ControlNeXt-SDXL Demo | |
The Gradio has bug currently and is just for demo. | |
More better results please refer to the [official project page](https://github.com/dvlab-research/ControlNeXt). | |
""") | |
with gr.Row(): | |
with gr.Column(scale=9): | |
prompt = gr.Textbox(value=DEFAULT_PROMPT, lines=3, placeholder='prompt', container=False) | |
negative_prompt = gr.Textbox(value=DEFAULT_NEGATIVE_PROMPT, lines=3, placeholder='negative prompt', container=False) | |
with gr.Column(scale=1): | |
generate_button = gr.Button("Generate", variant='primary', min_width=96) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
control_image = gr.Image( | |
value=None, | |
label='Condition', | |
sources=['upload'], | |
type='pil', | |
height=512, | |
image_mode='RGB', | |
format='png', | |
show_download_button=True, | |
show_share_button=True, | |
) | |
with gr.Row(): | |
processor = gr.Dropdown( | |
label='Image Preprocessor', | |
choices=preprocessors, | |
value='canny', | |
) | |
process_button = gr.Button("Process", variant='primary', min_width=96, scale=0) | |
with gr.Row(): | |
scheduler = gr.Dropdown( | |
label='Scheduler', | |
choices=schedulers, | |
value='Euler A', | |
multiselect=False, | |
allow_custom_value=False, | |
filterable=True, | |
) | |
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=28, label='Steps') | |
with gr.Row(): | |
cfg_scale = gr.Slider(minimum=1, maximum=30, step=1, value=7.5, label='CFG Scale') | |
controlnet_scale = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.35, label='ControlNet Scale') | |
with gr.Row(): | |
seed = gr.Number(label='Seed', step=1, precision=0, value=-1) | |
with gr.Column(scale=1): | |
output = gr.Gallery( | |
label='Output', | |
value=None, | |
object_fit='scale-down', | |
columns=4, | |
height=512, | |
show_download_button=True, | |
show_share_button=True, | |
) | |
with gr.Row(): | |
example = gr.Examples( | |
examples=[ | |
'best quality, 1girl, solo, open hand, outdoors, street', | |
Image.open('examples/example_1.jpg'), | |
], | |
inputs=[ | |
prompt, | |
control_image, | |
] | |
) | |
def generate( | |
prompt, | |
control_image, | |
negative_prompt, | |
cfg_scale, | |
controlnet_scale, | |
num_inference_steps, | |
scheduler, | |
seed, | |
): | |
pipeline.scheduler = tools.get_scheduler(scheduler, pipeline.scheduler.config) | |
generator = torch.Generator(device=device).manual_seed(max(0, min(seed, np.iinfo(np.int32).max))) if seed != -1 else None | |
if control_image is None: | |
raise gr.Error('Please upload an image.') | |
width, height = utils.around_reso(control_image.width, control_image.height, reso=1024, max_width=2048, max_height=2048, divisible=32) | |
control_image = control_image.resize((width, height)).convert('RGB') | |
with torch.autocast(device): | |
output_images = pipeline.__call__( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
controlnet_image=control_image, | |
controlnet_scale=controlnet_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
guidance_scale=cfg_scale, | |
num_inference_steps=num_inference_steps, | |
).images | |
return output_images | |
def process( | |
image, | |
processor, | |
): | |
if image is None: | |
raise gr.Error('Please upload an image.') | |
processor = preprocess.get_extractor(processor) | |
image = processor(image) | |
return image | |
generate_button.click( | |
fn=generate, | |
inputs=[prompt, control_image, negative_prompt, cfg_scale, controlnet_scale, num_inference_steps, scheduler, seed], | |
outputs=[output], | |
) | |
process_button.click( | |
fn=process, | |
inputs=[control_image, processor], | |
outputs=[control_image], | |
) | |
return demo | |
if __name__ == '__main__': | |
demo = ui() | |
demo.queue().launch() | |