File size: 2,508 Bytes
5d75401
 
5c78d10
5d75401
 
 
 
5c78d10
 
 
5d75401
5c78d10
 
 
 
 
 
5d75401
 
 
 
 
 
5c78d10
 
 
 
 
5d75401
5c78d10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d75401
5c78d10
 
 
 
5d75401
 
5c78d10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPProcessor, CLIPModel
from PIL import Image
import requests
from io import BytesIO

# Load CLIP model for image classification
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# Load Mistral-7B-Instruct-v0.3 model for chat
mistral_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
mistral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")

# Function for image classification with CLIP (anime recognition)
def classify_image(input_image):
    if isinstance(input_image, str):
        response = requests.get(input_image)
        img = Image.open(BytesIO(response.content))
    else:
        img = Image.fromarray(input_image)
    
    # Prepare the image and text (anime-related labels)
    inputs = clip_processor(text=["anime", "cartoon", "realistic", "painting"], images=img, return_tensors="pt", padding=True)
    outputs = clip_model(**inputs)
    logits_per_image = outputs.logits_per_image # this is the image-text similarity score
    probs = logits_per_image.softmax(dim=1)  # we can apply softmax to get the label probabilities
    
    # Return the predicted class label
    labels = ["anime", "cartoon", "realistic", "painting"]
    predicted_label = labels[probs.argmax()]
    return predicted_label

# Function for chat with Mistral 7B Instruct
def chat_with_mistral(input_text):
    inputs = mistral_tokenizer(input_text, return_tensors="pt")
    outputs = mistral_model.generate(inputs["input_ids"], max_length=150)
    response = mistral_tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Create Gradio interface for both Image Classification and Chat
with gr.Blocks() as demo:
    with gr.Tab("Chat with Mistral"):
        chat_input = gr.Textbox(label="Ask Mistral 7B", placeholder="Type your question here...")
        chat_output = gr.Textbox(label="Mistral's Reply", interactive=False)
        chat_input.submit(chat_with_mistral, inputs=chat_input, outputs=chat_output)

    with gr.Tab("Classify Anime Image"):
        img_input = gr.Image(type="numpy", label="Upload Image for Anime Classification")
        img_output = gr.Textbox(label="Predicted Label", interactive=False)
        img_input.change(classify_image, inputs=img_input, outputs=img_output)

# Launch the interface
demo.launch()