File size: 4,757 Bytes
fdd2607
ad8a314
ea92c48
e702117
ea92c48
 
 
e702117
 
 
0b103dc
ea92c48
 
 
 
e702117
 
 
 
0b103dc
c79c478
2e415e2
 
 
e702117
 
 
 
c79c478
 
0b103dc
d402657
 
 
 
ad8a314
e702117
 
 
0b103dc
ea92c48
e702117
 
 
 
 
 
ea92c48
d402657
ea92c48
0b103dc
ea92c48
ad8a314
e702117
ea92c48
 
 
e702117
ea92c48
0b103dc
ea92c48
 
 
 
ad8a314
 
ea92c48
 
 
 
 
 
0b103dc
ea92c48
 
 
 
 
 
0b103dc
ea92c48
0b103dc
 
ea92c48
 
 
 
0b103dc
ea92c48
ad8a314
 
 
ea92c48
e702117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import Dataset, load_dataset
from peft import LoraConfig, get_peft_model
import torch

# Initialize Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Add padding token (GPT-2 fix)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

# Custom Dataset (Predefined Q&A Pairs for Project Expo)
custom_data = [
    {"text": "Who are you?", "label": "I am Eva, a virtual voice assistant."},
    {"text": "What is your name?", "label": "I am Eva, how can I help you?"},
    {"text": "What can you do?", "label": "I can assist with answering questions, searching the web, and much more!"},
    {"text": "Who invented the computer?", "label": "Charles Babbage is known as the father of the computer."},
    {"text": "Tell me a joke.", "label": "Why don’t scientists trust atoms? Because they make up everything!"},
    {"text": "Who is the Prime Minister of India?", "label": "The current Prime Minister of India is Narendra Modi."},
    {"text": "Who created you?", "label": "I was created by an expert team specializing in AI fine-tuning and web development."}
]

# Convert custom dataset to Hugging Face Dataset
dataset_custom = Dataset.from_dict({
    "text": [d['text'] for d in custom_data],
    "label": [d['label'] for d in custom_data]
})

# Load OpenWebText dataset (5% portion to avoid streaming issues)
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]")

# Tokenization function
def tokenize_function(examples):
    return tokenizer(
        examples["text"],
        truncation=True,
        padding="max_length",
        max_length=512
    )

tokenized_datasets = dataset_custom.map(tokenize_function, batched=True)

# Apply LoRA for efficient fine-tuning
lora_config = LoraConfig(
    r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
    target_modules=["c_attn", "c_proj"]  # Apply LoRA to attention layers
)

model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()  # Enable checkpointing for memory efficiency

# Training arguments
training_args = TrainingArguments(
    output_dir="gpt2_finetuned",
    auto_find_batch_size=True,
    gradient_accumulation_steps=4,
    learning_rate=5e-5,
    num_train_epochs=3,
    save_strategy="epoch",
    logging_dir="logs",
    bf16=True,
    push_to_hub=True
)

# Trainer setup
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets
)

# Start fine-tuning
trainer.train()

# Save and push the model to Hugging Face Hub
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()

# Deploy as Gradio Interface
def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=100)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Gradio Chat Interface
def respond(message, history, system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}]

    # Ensure 'history' is handled as a list of dicts
    if isinstance(history, list):
        for entry in history:
            if isinstance(entry, dict):
                messages.append(entry)  # Correct format already
            elif isinstance(entry, tuple) and len(entry) == 2:
                messages.append({"role": "user", "content": entry[0]})
                messages.append({"role": "assistant", "content": entry[1]})

    messages.append({"role": "user", "content": message})
    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

demo = gr.ChatInterface(
    respond,
    chatbot=gr.Chatbot(type="messages"),
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

# Launch the Gradio app
if __name__ == "__main__":
    demo.launch()