Spaces:
Running
Running
File size: 4,757 Bytes
fdd2607 ad8a314 ea92c48 e702117 ea92c48 e702117 0b103dc ea92c48 e702117 0b103dc c79c478 2e415e2 e702117 c79c478 0b103dc d402657 ad8a314 e702117 0b103dc ea92c48 e702117 ea92c48 d402657 ea92c48 0b103dc ea92c48 ad8a314 e702117 ea92c48 e702117 ea92c48 0b103dc ea92c48 ad8a314 ea92c48 0b103dc ea92c48 0b103dc ea92c48 0b103dc ea92c48 0b103dc ea92c48 ad8a314 ea92c48 e702117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import Dataset, load_dataset
from peft import LoraConfig, get_peft_model
import torch
# Initialize Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Add padding token (GPT-2 fix)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Custom Dataset (Predefined Q&A Pairs for Project Expo)
custom_data = [
{"text": "Who are you?", "label": "I am Eva, a virtual voice assistant."},
{"text": "What is your name?", "label": "I am Eva, how can I help you?"},
{"text": "What can you do?", "label": "I can assist with answering questions, searching the web, and much more!"},
{"text": "Who invented the computer?", "label": "Charles Babbage is known as the father of the computer."},
{"text": "Tell me a joke.", "label": "Why don’t scientists trust atoms? Because they make up everything!"},
{"text": "Who is the Prime Minister of India?", "label": "The current Prime Minister of India is Narendra Modi."},
{"text": "Who created you?", "label": "I was created by an expert team specializing in AI fine-tuning and web development."}
]
# Convert custom dataset to Hugging Face Dataset
dataset_custom = Dataset.from_dict({
"text": [d['text'] for d in custom_data],
"label": [d['label'] for d in custom_data]
})
# Load OpenWebText dataset (5% portion to avoid streaming issues)
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]")
# Tokenization function
def tokenize_function(examples):
return tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=512
)
tokenized_datasets = dataset_custom.map(tokenize_function, batched=True)
# Apply LoRA for efficient fine-tuning
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
target_modules=["c_attn", "c_proj"] # Apply LoRA to attention layers
)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable() # Enable checkpointing for memory efficiency
# Training arguments
training_args = TrainingArguments(
output_dir="gpt2_finetuned",
auto_find_batch_size=True,
gradient_accumulation_steps=4,
learning_rate=5e-5,
num_train_epochs=3,
save_strategy="epoch",
logging_dir="logs",
bf16=True,
push_to_hub=True
)
# Trainer setup
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets
)
# Start fine-tuning
trainer.train()
# Save and push the model to Hugging Face Hub
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()
# Deploy as Gradio Interface
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Gradio Chat Interface
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
# Ensure 'history' is handled as a list of dicts
if isinstance(history, list):
for entry in history:
if isinstance(entry, dict):
messages.append(entry) # Correct format already
elif isinstance(entry, tuple) and len(entry) == 2:
messages.append({"role": "user", "content": entry[0]})
messages.append({"role": "assistant", "content": entry[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
demo = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(type="messages"),
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()
|