expo / app.py
Faizal2805's picture
Update app.py
301f745 verified
raw
history blame
4.11 kB
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
# Updated for OpenAI-style format (replacing tuples)
for entry in history:
role = "user" if entry["role"] == "user" else "assistant"
messages.append({"role": role, "content": entry["content"]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Updated ChatInterface with correct type
demo = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(type="messages"), # Correct format
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()
# -----------------------------------------------
# Fine-Tuning GPT-2 on Hugging Face Spaces (Improved Section)
# -----------------------------------------------
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from peft import LoraConfig, get_peft_model
import torch
from huggingface_hub import notebook_login
notebook_login()
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
custom_data = [
{"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
{"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
{"prompt": "What can you do?", "response": "I can assist with answering questions, searching the web, and much more!"},
{"prompt": "Who invented the computer?", "response": "Charles Babbage is known as the father of the computer."},
{"prompt": "Tell me a joke.", "response": "Why don’t scientists trust atoms? Because they make up everything!"},
{"prompt": "Who is the Prime Minister of India?", "response": "The current Prime Minister of India is Narendra Modi."},
{"prompt": "Who created you?", "response": "I was created by an expert team specializing in AI fine-tuning and web development."}
]
dataset_custom = load_dataset("json", data_files={"train": custom_data})
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]")
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
target_modules=["c_attn", "c_proj"]
)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()
training_args = TrainingArguments(
output_dir="gpt2_finetuned",
auto_find_batch_size=True,
gradient_accumulation_steps=4,
learning_rate=5e-5,
num_train_epochs=3,
save_strategy="epoch",
logging_dir="logs",
bf16=True,
push_to_hub=True
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets
)
trainer.train()
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()