Faizal2805 commited on
Commit
8377ba5
·
verified ·
1 Parent(s): c0c2682

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -53
app.py CHANGED
@@ -1,22 +1,91 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
4
  from datasets import load_dataset
5
  from peft import LoraConfig, get_peft_model
6
  import torch
7
 
8
- # Initialize Hugging Face Inference Client
9
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
10
 
11
- # GPT-2 Model Setup
12
  model_name = "gpt2"
13
  tokenizer = AutoTokenizer.from_pretrained(model_name)
14
  model = AutoModelForCausalLM.from_pretrained(model_name)
15
 
16
- # Add padding token
17
- tokenizer.pad_token = tokenizer.eos_token
18
 
19
- # Custom Dataset
20
  custom_data = [
21
  {"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
22
  {"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
@@ -30,8 +99,8 @@ custom_data = [
30
  # Convert custom dataset to Hugging Face Dataset
31
  dataset_custom = load_dataset("json", data_files={"train": custom_data})
32
 
33
- # Load OpenWebText dataset with `trust_remote_code=True`
34
- dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]", trust_remote_code=True)
35
 
36
  # Tokenization function
37
  def tokenize_function(examples):
@@ -39,16 +108,18 @@ def tokenize_function(examples):
39
 
40
  tokenized_datasets = dataset.map(tokenize_function, batched=True)
41
 
42
- # LoRA Configuration
43
  lora_config = LoraConfig(
44
  r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
45
- target_modules=["c_attn", "c_proj"]
46
  )
47
 
48
  model = get_peft_model(model, lora_config)
 
 
49
  model.gradient_checkpointing_enable()
50
 
51
- # Training Arguments
52
  training_args = TrainingArguments(
53
  output_dir="gpt2_finetuned",
54
  auto_find_batch_size=True,
@@ -61,14 +132,14 @@ training_args = TrainingArguments(
61
  push_to_hub=True
62
  )
63
 
64
- # Trainer Setup
65
  trainer = Trainer(
66
  model=model,
67
  args=training_args,
68
  train_dataset=tokenized_datasets
69
  )
70
 
71
- # Fine-tuning
72
  trainer.train()
73
 
74
  # Save and push the model to Hugging Face Hub
@@ -76,44 +147,11 @@ trainer.save_model("gpt2_finetuned")
76
  tokenizer.save_pretrained("gpt2_finetuned")
77
  trainer.push_to_hub()
78
 
79
- # Chatbot Response Function
80
- def respond(message, history, system_message, max_tokens, temperature, top_p):
81
- messages = [{"role": "system", "content": system_message}]
82
-
83
- if isinstance(history, list):
84
- for entry in history:
85
- if isinstance(entry, dict):
86
- messages.append(entry)
87
- elif isinstance(entry, tuple) and len(entry) == 2:
88
- messages.append({"role": "user", "content": entry[0]})
89
- messages.append({"role": "assistant", "content": entry[1]})
90
 
91
- messages.append({"role": "user", "content": message})
92
-
93
- response = ""
94
- for message in client.chat_completion(
95
- messages,
96
- max_tokens=max_tokens,
97
- stream=True,
98
- temperature=temperature,
99
- top_p=top_p,
100
- ):
101
- token = message.choices[0].delta.content
102
- response += token
103
- yield response
104
-
105
- # Gradio Chatbot Interface
106
- demo = gr.ChatInterface(
107
- respond,
108
- chatbot=gr.Chatbot(type="messages"),
109
- additional_inputs=[
110
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
111
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
112
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
113
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
114
- ],
115
- )
116
-
117
- # Launch the App
118
- if __name__ == "__main__":
119
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
+
62
+
63
+ if _name_ == "_main_":
64
+ demo.launch()
65
+
66
+ # Fine-Tuning GPT-2 on Hugging Face Spaces (Streaming 40GB Dataset, No Storage Issues)
67
+
68
+ # Install required libraries
69
+ # Install required libraries (Run this separately in a terminal or notebook cell)
70
+ # !pip install transformers datasets peft accelerate bitsandbytes torch torchvision torchaudio gradio -q
71
+
72
  from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
73
  from datasets import load_dataset
74
  from peft import LoraConfig, get_peft_model
75
  import torch
76
 
77
+ # Authenticate Hugging Face
78
+ from huggingface_hub import notebook_login
79
+ notebook_login()
80
 
81
+ # Load GPT-2 model and tokenizer
82
  model_name = "gpt2"
83
  tokenizer = AutoTokenizer.from_pretrained(model_name)
84
  model = AutoModelForCausalLM.from_pretrained(model_name)
85
 
86
+ # Load the OpenWebText dataset using streaming (No download required)
 
87
 
88
+ # Custom Dataset (Predefined Q&A Pairs for Project Expo)
89
  custom_data = [
90
  {"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
91
  {"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
 
99
  # Convert custom dataset to Hugging Face Dataset
100
  dataset_custom = load_dataset("json", data_files={"train": custom_data})
101
 
102
+ # Merge with OpenWebText dataset
103
+ dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]") # Load 5% to avoid streaming issues
104
 
105
  # Tokenization function
106
  def tokenize_function(examples):
 
108
 
109
  tokenized_datasets = dataset.map(tokenize_function, batched=True)
110
 
111
+ # Apply LoRA for efficient fine-tuning
112
  lora_config = LoraConfig(
113
  r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
114
+ target_modules=["c_attn", "c_proj"] # Apply LoRA to attention layers
115
  )
116
 
117
  model = get_peft_model(model, lora_config)
118
+
119
+ # Enable gradient checkpointing to reduce memory usage
120
  model.gradient_checkpointing_enable()
121
 
122
+ # Training arguments
123
  training_args = TrainingArguments(
124
  output_dir="gpt2_finetuned",
125
  auto_find_batch_size=True,
 
132
  push_to_hub=True
133
  )
134
 
135
+ # Trainer setup
136
  trainer = Trainer(
137
  model=model,
138
  args=training_args,
139
  train_dataset=tokenized_datasets
140
  )
141
 
142
+ # Start fine-tuning
143
  trainer.train()
144
 
145
  # Save and push the model to Hugging Face Hub
 
147
  tokenizer.save_pretrained("gpt2_finetuned")
148
  trainer.push_to_hub()
149
 
150
+ # Deploy as Gradio Interface
151
+ def generate_response(prompt):
152
+ inputs = tokenizer(prompt, return_tensors="pt")
153
+ outputs = model.generate(**inputs, max_length=100)
154
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
 
155
 
156
+ demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
157
+ demo.launch()