Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,91 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
4 |
from datasets import load_dataset
|
5 |
from peft import LoraConfig, get_peft_model
|
6 |
import torch
|
7 |
|
8 |
-
#
|
9 |
-
|
|
|
10 |
|
11 |
-
# GPT-2
|
12 |
model_name = "gpt2"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
|
16 |
-
#
|
17 |
-
tokenizer.pad_token = tokenizer.eos_token
|
18 |
|
19 |
-
# Custom Dataset
|
20 |
custom_data = [
|
21 |
{"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
|
22 |
{"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
|
@@ -30,8 +99,8 @@ custom_data = [
|
|
30 |
# Convert custom dataset to Hugging Face Dataset
|
31 |
dataset_custom = load_dataset("json", data_files={"train": custom_data})
|
32 |
|
33 |
-
#
|
34 |
-
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]"
|
35 |
|
36 |
# Tokenization function
|
37 |
def tokenize_function(examples):
|
@@ -39,16 +108,18 @@ def tokenize_function(examples):
|
|
39 |
|
40 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
41 |
|
42 |
-
# LoRA
|
43 |
lora_config = LoraConfig(
|
44 |
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
|
45 |
-
target_modules=["c_attn", "c_proj"]
|
46 |
)
|
47 |
|
48 |
model = get_peft_model(model, lora_config)
|
|
|
|
|
49 |
model.gradient_checkpointing_enable()
|
50 |
|
51 |
-
# Training
|
52 |
training_args = TrainingArguments(
|
53 |
output_dir="gpt2_finetuned",
|
54 |
auto_find_batch_size=True,
|
@@ -61,14 +132,14 @@ training_args = TrainingArguments(
|
|
61 |
push_to_hub=True
|
62 |
)
|
63 |
|
64 |
-
# Trainer
|
65 |
trainer = Trainer(
|
66 |
model=model,
|
67 |
args=training_args,
|
68 |
train_dataset=tokenized_datasets
|
69 |
)
|
70 |
|
71 |
-
#
|
72 |
trainer.train()
|
73 |
|
74 |
# Save and push the model to Hugging Face Hub
|
@@ -76,44 +147,11 @@ trainer.save_model("gpt2_finetuned")
|
|
76 |
tokenizer.save_pretrained("gpt2_finetuned")
|
77 |
trainer.push_to_hub()
|
78 |
|
79 |
-
#
|
80 |
-
def
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
for entry in history:
|
85 |
-
if isinstance(entry, dict):
|
86 |
-
messages.append(entry)
|
87 |
-
elif isinstance(entry, tuple) and len(entry) == 2:
|
88 |
-
messages.append({"role": "user", "content": entry[0]})
|
89 |
-
messages.append({"role": "assistant", "content": entry[1]})
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
response = ""
|
94 |
-
for message in client.chat_completion(
|
95 |
-
messages,
|
96 |
-
max_tokens=max_tokens,
|
97 |
-
stream=True,
|
98 |
-
temperature=temperature,
|
99 |
-
top_p=top_p,
|
100 |
-
):
|
101 |
-
token = message.choices[0].delta.content
|
102 |
-
response += token
|
103 |
-
yield response
|
104 |
-
|
105 |
-
# Gradio Chatbot Interface
|
106 |
-
demo = gr.ChatInterface(
|
107 |
-
respond,
|
108 |
-
chatbot=gr.Chatbot(type="messages"),
|
109 |
-
additional_inputs=[
|
110 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
111 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
112 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
113 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
114 |
-
],
|
115 |
-
)
|
116 |
-
|
117 |
-
# Launch the App
|
118 |
-
if __name__ == "__main__":
|
119 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
"""
|
5 |
+
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
|
9 |
+
|
10 |
+
def respond(
|
11 |
+
message,
|
12 |
+
history: list[tuple[str, str]],
|
13 |
+
system_message,
|
14 |
+
max_tokens,
|
15 |
+
temperature,
|
16 |
+
top_p,
|
17 |
+
):
|
18 |
+
messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
for val in history:
|
21 |
+
if val[0]:
|
22 |
+
messages.append({"role": "user", "content": val[0]})
|
23 |
+
if val[1]:
|
24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
+
messages.append({"role": "user", "content": message})
|
27 |
+
|
28 |
+
response = ""
|
29 |
+
|
30 |
+
for message in client.chat_completion(
|
31 |
+
messages,
|
32 |
+
max_tokens=max_tokens,
|
33 |
+
stream=True,
|
34 |
+
temperature=temperature,
|
35 |
+
top_p=top_p,
|
36 |
+
):
|
37 |
+
token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
response += token
|
40 |
+
yield response
|
41 |
+
|
42 |
+
|
43 |
+
"""
|
44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
"""
|
46 |
+
demo = gr.ChatInterface(
|
47 |
+
respond,
|
48 |
+
additional_inputs=[
|
49 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
gr.Slider(
|
53 |
+
minimum=0.1,
|
54 |
+
maximum=1.0,
|
55 |
+
value=0.95,
|
56 |
+
step=0.05,
|
57 |
+
label="Top-p (nucleus sampling)",
|
58 |
+
),
|
59 |
+
],
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
if _name_ == "_main_":
|
64 |
+
demo.launch()
|
65 |
+
|
66 |
+
# Fine-Tuning GPT-2 on Hugging Face Spaces (Streaming 40GB Dataset, No Storage Issues)
|
67 |
+
|
68 |
+
# Install required libraries
|
69 |
+
# Install required libraries (Run this separately in a terminal or notebook cell)
|
70 |
+
# !pip install transformers datasets peft accelerate bitsandbytes torch torchvision torchaudio gradio -q
|
71 |
+
|
72 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
73 |
from datasets import load_dataset
|
74 |
from peft import LoraConfig, get_peft_model
|
75 |
import torch
|
76 |
|
77 |
+
# Authenticate Hugging Face
|
78 |
+
from huggingface_hub import notebook_login
|
79 |
+
notebook_login()
|
80 |
|
81 |
+
# Load GPT-2 model and tokenizer
|
82 |
model_name = "gpt2"
|
83 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
84 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
85 |
|
86 |
+
# Load the OpenWebText dataset using streaming (No download required)
|
|
|
87 |
|
88 |
+
# Custom Dataset (Predefined Q&A Pairs for Project Expo)
|
89 |
custom_data = [
|
90 |
{"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
|
91 |
{"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
|
|
|
99 |
# Convert custom dataset to Hugging Face Dataset
|
100 |
dataset_custom = load_dataset("json", data_files={"train": custom_data})
|
101 |
|
102 |
+
# Merge with OpenWebText dataset
|
103 |
+
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]") # Load 5% to avoid streaming issues
|
104 |
|
105 |
# Tokenization function
|
106 |
def tokenize_function(examples):
|
|
|
108 |
|
109 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
110 |
|
111 |
+
# Apply LoRA for efficient fine-tuning
|
112 |
lora_config = LoraConfig(
|
113 |
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
|
114 |
+
target_modules=["c_attn", "c_proj"] # Apply LoRA to attention layers
|
115 |
)
|
116 |
|
117 |
model = get_peft_model(model, lora_config)
|
118 |
+
|
119 |
+
# Enable gradient checkpointing to reduce memory usage
|
120 |
model.gradient_checkpointing_enable()
|
121 |
|
122 |
+
# Training arguments
|
123 |
training_args = TrainingArguments(
|
124 |
output_dir="gpt2_finetuned",
|
125 |
auto_find_batch_size=True,
|
|
|
132 |
push_to_hub=True
|
133 |
)
|
134 |
|
135 |
+
# Trainer setup
|
136 |
trainer = Trainer(
|
137 |
model=model,
|
138 |
args=training_args,
|
139 |
train_dataset=tokenized_datasets
|
140 |
)
|
141 |
|
142 |
+
# Start fine-tuning
|
143 |
trainer.train()
|
144 |
|
145 |
# Save and push the model to Hugging Face Hub
|
|
|
147 |
tokenizer.save_pretrained("gpt2_finetuned")
|
148 |
trainer.push_to_hub()
|
149 |
|
150 |
+
# Deploy as Gradio Interface
|
151 |
+
def generate_response(prompt):
|
152 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
153 |
+
outputs = model.generate(**inputs, max_length=100)
|
154 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
157 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|