Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,54 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
4 |
-
from datasets import
|
5 |
from peft import LoraConfig, get_peft_model
|
6 |
import torch
|
7 |
|
8 |
# Initialize Hugging Face Inference Client
|
9 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
11 |
-
#
|
12 |
model_name = "gpt2"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
|
16 |
-
# Add padding token
|
17 |
-
|
18 |
-
tokenizer.pad_token = tokenizer.eos_token
|
19 |
|
20 |
-
# Custom Dataset
|
21 |
custom_data = [
|
22 |
-
{"
|
23 |
-
{"
|
24 |
-
{"
|
25 |
-
{"
|
26 |
-
{"
|
27 |
-
{"
|
28 |
-
{"
|
29 |
]
|
30 |
|
31 |
# Convert custom dataset to Hugging Face Dataset
|
32 |
-
dataset_custom =
|
33 |
-
"text": [d['text'] for d in custom_data],
|
34 |
-
"label": [d['label'] for d in custom_data]
|
35 |
-
})
|
36 |
|
37 |
-
# Load OpenWebText dataset
|
38 |
-
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]")
|
39 |
|
40 |
# Tokenization function
|
41 |
def tokenize_function(examples):
|
42 |
-
return tokenizer(
|
43 |
-
examples["text"],
|
44 |
-
truncation=True,
|
45 |
-
padding="max_length",
|
46 |
-
max_length=512
|
47 |
-
)
|
48 |
|
49 |
-
tokenized_datasets =
|
50 |
|
51 |
-
#
|
52 |
lora_config = LoraConfig(
|
53 |
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
|
54 |
-
target_modules=["c_attn", "c_proj"]
|
55 |
)
|
56 |
|
57 |
model = get_peft_model(model, lora_config)
|
58 |
-
model.gradient_checkpointing_enable()
|
59 |
|
60 |
-
# Training
|
61 |
training_args = TrainingArguments(
|
62 |
output_dir="gpt2_finetuned",
|
63 |
auto_find_batch_size=True,
|
@@ -70,14 +61,14 @@ training_args = TrainingArguments(
|
|
70 |
push_to_hub=True
|
71 |
)
|
72 |
|
73 |
-
# Trainer
|
74 |
trainer = Trainer(
|
75 |
model=model,
|
76 |
args=training_args,
|
77 |
train_dataset=tokenized_datasets
|
78 |
)
|
79 |
|
80 |
-
#
|
81 |
trainer.train()
|
82 |
|
83 |
# Save and push the model to Hugging Face Hub
|
@@ -85,28 +76,21 @@ trainer.save_model("gpt2_finetuned")
|
|
85 |
tokenizer.save_pretrained("gpt2_finetuned")
|
86 |
trainer.push_to_hub()
|
87 |
|
88 |
-
#
|
89 |
-
def generate_response(prompt):
|
90 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
91 |
-
outputs = model.generate(**inputs, max_length=100)
|
92 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
93 |
-
|
94 |
-
# Gradio Chat Interface
|
95 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
96 |
messages = [{"role": "system", "content": system_message}]
|
97 |
|
98 |
-
# Ensure 'history' is handled as a list of dicts
|
99 |
if isinstance(history, list):
|
100 |
for entry in history:
|
101 |
if isinstance(entry, dict):
|
102 |
-
messages.append(entry)
|
103 |
elif isinstance(entry, tuple) and len(entry) == 2:
|
104 |
messages.append({"role": "user", "content": entry[0]})
|
105 |
messages.append({"role": "assistant", "content": entry[1]})
|
106 |
|
107 |
messages.append({"role": "user", "content": message})
|
108 |
-
response = ""
|
109 |
|
|
|
110 |
for message in client.chat_completion(
|
111 |
messages,
|
112 |
max_tokens=max_tokens,
|
@@ -118,6 +102,7 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
118 |
response += token
|
119 |
yield response
|
120 |
|
|
|
121 |
demo = gr.ChatInterface(
|
122 |
respond,
|
123 |
chatbot=gr.Chatbot(type="messages"),
|
@@ -125,16 +110,10 @@ demo = gr.ChatInterface(
|
|
125 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
126 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
127 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
128 |
-
gr.Slider(
|
129 |
-
minimum=0.1,
|
130 |
-
maximum=1.0,
|
131 |
-
value=0.95,
|
132 |
-
step=0.05,
|
133 |
-
label="Top-p (nucleus sampling)",
|
134 |
-
),
|
135 |
],
|
136 |
)
|
137 |
|
138 |
-
# Launch the
|
139 |
if __name__ == "__main__":
|
140 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
4 |
+
from datasets import load_dataset
|
5 |
from peft import LoraConfig, get_peft_model
|
6 |
import torch
|
7 |
|
8 |
# Initialize Hugging Face Inference Client
|
9 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
11 |
+
# GPT-2 Model Setup
|
12 |
model_name = "gpt2"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
|
16 |
+
# Add padding token
|
17 |
+
tokenizer.pad_token = tokenizer.eos_token
|
|
|
18 |
|
19 |
+
# Custom Dataset
|
20 |
custom_data = [
|
21 |
+
{"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
|
22 |
+
{"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
|
23 |
+
{"prompt": "What can you do?", "response": "I can assist with answering questions, searching the web, and much more!"},
|
24 |
+
{"prompt": "Who invented the computer?", "response": "Charles Babbage is known as the father of the computer."},
|
25 |
+
{"prompt": "Tell me a joke.", "response": "Why don’t scientists trust atoms? Because they make up everything!"},
|
26 |
+
{"prompt": "Who is the Prime Minister of India?", "response": "The current Prime Minister of India is Narendra Modi."},
|
27 |
+
{"prompt": "Who created you?", "response": "I was created by an expert team specializing in AI fine-tuning and web development."}
|
28 |
]
|
29 |
|
30 |
# Convert custom dataset to Hugging Face Dataset
|
31 |
+
dataset_custom = load_dataset("json", data_files={"train": custom_data})
|
|
|
|
|
|
|
32 |
|
33 |
+
# Load OpenWebText dataset with `trust_remote_code=True`
|
34 |
+
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]", trust_remote_code=True)
|
35 |
|
36 |
# Tokenization function
|
37 |
def tokenize_function(examples):
|
38 |
+
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
41 |
|
42 |
+
# LoRA Configuration
|
43 |
lora_config = LoraConfig(
|
44 |
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
|
45 |
+
target_modules=["c_attn", "c_proj"]
|
46 |
)
|
47 |
|
48 |
model = get_peft_model(model, lora_config)
|
49 |
+
model.gradient_checkpointing_enable()
|
50 |
|
51 |
+
# Training Arguments
|
52 |
training_args = TrainingArguments(
|
53 |
output_dir="gpt2_finetuned",
|
54 |
auto_find_batch_size=True,
|
|
|
61 |
push_to_hub=True
|
62 |
)
|
63 |
|
64 |
+
# Trainer Setup
|
65 |
trainer = Trainer(
|
66 |
model=model,
|
67 |
args=training_args,
|
68 |
train_dataset=tokenized_datasets
|
69 |
)
|
70 |
|
71 |
+
# Fine-tuning
|
72 |
trainer.train()
|
73 |
|
74 |
# Save and push the model to Hugging Face Hub
|
|
|
76 |
tokenizer.save_pretrained("gpt2_finetuned")
|
77 |
trainer.push_to_hub()
|
78 |
|
79 |
+
# Chatbot Response Function
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
81 |
messages = [{"role": "system", "content": system_message}]
|
82 |
|
|
|
83 |
if isinstance(history, list):
|
84 |
for entry in history:
|
85 |
if isinstance(entry, dict):
|
86 |
+
messages.append(entry)
|
87 |
elif isinstance(entry, tuple) and len(entry) == 2:
|
88 |
messages.append({"role": "user", "content": entry[0]})
|
89 |
messages.append({"role": "assistant", "content": entry[1]})
|
90 |
|
91 |
messages.append({"role": "user", "content": message})
|
|
|
92 |
|
93 |
+
response = ""
|
94 |
for message in client.chat_completion(
|
95 |
messages,
|
96 |
max_tokens=max_tokens,
|
|
|
102 |
response += token
|
103 |
yield response
|
104 |
|
105 |
+
# Gradio Chatbot Interface
|
106 |
demo = gr.ChatInterface(
|
107 |
respond,
|
108 |
chatbot=gr.Chatbot(type="messages"),
|
|
|
110 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
111 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
112 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
113 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
],
|
115 |
)
|
116 |
|
117 |
+
# Launch the App
|
118 |
if __name__ == "__main__":
|
119 |
demo.launch()
|