Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,216 Bytes
67ae540 4c6ecb5 5be3d23 67ae540 2ba0a0c 67ae540 5be3d23 4c6ecb5 67ae540 6a423bd 67ae540 5be3d23 4c6ecb5 67ae540 4c6ecb5 67ae540 4c6ecb5 67ae540 4c6ecb5 5be3d23 4c6ecb5 5be3d23 67ae540 5be3d23 67ae540 4c6ecb5 67ae540 5be3d23 67ae540 5be3d23 67ae540 5be3d23 4c6ecb5 2ba0a0c 4c6ecb5 67ae540 4c6ecb5 2ba0a0c 67ae540 4c6ecb5 67ae540 4c6ecb5 67ae540 4c6ecb5 67ae540 4c6ecb5 efd5003 67ae540 4c6ecb5 67ae540 efd5003 4c6ecb5 67ae540 efd5003 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# import gradio as gr
# from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
# from threading import Thread
# from qwen_vl_utils import process_vision_info
# import torch
# import time
# # Check if a GPU is available
# device = "cuda" if torch.cuda.is_available() else "cpu"
# local_path = "Fancy-MLLM/R1-OneVision-7B"
# # Load the model on the appropriate device (GPU if available, otherwise CPU)
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
# local_path, torch_dtype="auto", device_map=device
# )
# processor = AutoProcessor.from_pretrained(local_path)
# def generate_output(image, text, button_click):
# # Prepare input data
# messages = [
# {
# "role": "user",
# "content": [
# {"type": "image", "image": image, 'min_pixels': 1003520, 'max_pixels': 12845056},
# {"type": "text", "text": text},
# ],
# }
# ]
# # Prepare inputs for the model
# text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# image_inputs, video_inputs = process_vision_info(messages)
# inputs = processor(
# text=[text_input],
# images=image_inputs,
# videos=video_inputs,
# padding=True,
# return_tensors="pt",
# )
# # Move inputs to the same device as the model
# inputs = inputs.to(model.device)
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
# generation_kwargs = dict(
# **inputs,
# streamer=streamer,
# max_new_tokens=4096,
# top_p=0.001,
# top_k=1,
# temperature=0.01,
# repetition_penalty=1.0,
# )
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
# thread.start()
# generated_text = ''
# try:
# for new_text in streamer:
# generated_text += new_text
# yield f"{generated_text}"
# except Exception as e:
# print(f"Error: {e}")
# yield f"Error occurred: {str(e)}"
# Css = """
# #output-markdown {
# overflow-y: auto;
# white-space: pre-wrap;
# word-wrap: break-word;
# }
# #output-markdown .math {
# overflow-x: auto;
# max-width: 100%;
# }
# .markdown-text {
# white-space: pre-wrap;
# word-wrap: break-word;
# }
# .markdown-output {
# min-height: 20vh;
# max-width: 100%;
# overflow-y: auto;
# }
# #qwen-md .katex-display { display: inline; }
# #qwen-md .katex-display>.katex { display: inline; }
# #qwen-md .katex-display>.katex>.katex-html { display: inline; }
# """
# with gr.Blocks(css=Css) as demo:
# gr.HTML("""<center><font size=8>🦖 R1-OneVision Demo</center>""")
# with gr.Row():
# with gr.Column():
# input_image = gr.Image(type="pil", label="Upload") # **改回 PIL 处理**
# input_text = gr.Textbox(label="Input your question")
# with gr.Row():
# clear_btn = gr.ClearButton([input_image, input_text])
# submit_btn = gr.Button("Submit", variant="primary")
# with gr.Column():
# output_text = gr.Markdown(elem_id="qwen-md", container=True, elem_classes="markdown-output")
# submit_btn.click(fn=generate_output, inputs=[input_image, input_text], outputs=output_text)
# demo.launch(share=False)
# import gradio as gr
# from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
# from transformers.image_utils import load_image
# from threading import Thread
# import time
# import torch
# import spaces
# MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct"
# processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
# MODEL_ID,
# trust_remote_code=True,
# torch_dtype=torch.bfloat16
# ).to("cuda").eval()
# @spaces.GPU(duration=200)
# def model_inference(input_dict, history):
# text = input_dict["text"]
# files = input_dict["files"]
# # Load images if provided
# if len(files) > 1:
# images = [load_image(image) for image in files]
# elif len(files) == 1:
# images = [load_image(files[0])]
# else:
# images = []
# # Validate input
# if text == "" and not images:
# gr.Error("Please input a query and optionally image(s).")
# return
# if text == "" and images:
# gr.Error("Please input a text query along with the image(s).")
# return
# # Prepare messages for the model
# messages = [
# {
# "role": "user",
# "content": [
# *[{"type": "image", "image": image} for image in images],
# {"type": "text", "text": text},
# ],
# }
# ]
# # Apply chat template and process inputs
# prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# inputs = processor(
# text=[prompt],
# images=images if images else None,
# return_tensors="pt",
# padding=True,
# ).to("cuda")
# # Set up streamer for real-time output
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
# # Start generation in a separate thread
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
# thread.start()
# # Stream the output
# buffer = ""
# yield "Thinking..."
# for new_text in streamer:
# buffer += new_text
# time.sleep(0.01)
# yield buffer
# examples = [
# [{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
# ]
# demo = gr.ChatInterface(
# fn=model_inference,
# description="# **🦖 Fancy-MLLM/R1-OneVision-7B**",
# examples=examples,
# textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
# stop_btn="Stop Generation",
# multimodal=True,
# cache_examples=False,
# )
# demo.launch(debug=True)
import gradio as gr
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
# 加载模型和处理器
MODEL_ID = "Fancy-MLLM/R1-OneVision-7B"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
def model_inference(input_dict, history):
text = input_dict["text"]
files = input_dict["files"]
# 加载图片(如果提供)
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
# 输入验证
if text == "" and not images:
return gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
return gr.Error("Please input a text query along with the image(s).")
# 准备输入消息
messages = [
{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}
]
# 使用处理器准备输入
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
# 设置最大输出token数以控制推理时间
max_new_tokens = 1024 # 可以根据实际需要调整
# 创建流式输出
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
# 使用后台线程执行推理
def run_inference():
model.generate(**generation_kwargs)
thread = Thread(target=run_inference)
thread.start()
# 生成过程中更新UI
buffer = ""
yield "Processing your request, please wait..."
for new_text in streamer:
buffer += new_text
time.sleep(0.01) # 给UI流畅更新的时间
yield buffer
# 示例输入
examples = [
[{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
]
# 创建Gradio界面
demo = gr.Interface(
fn=model_inference,
description="# **🦖 Fancy-MLLM/R1-OneVision-7B**",
examples=examples,
inputs=gr.Chatbox(),
outputs=gr.Textbox(),
live=True,
allow_flagging="never",
layout="vertical",
title="Multimodal Inference with Fancy-MLLM",
cache_examples=False,
)
demo.launch(debug=True)
|