R1-Onevision / app.py
shreddedpork's picture
Update app.py
67401ba verified
raw
history blame
2.01 kB
import gradio as gr
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
# Specify the local cache path for models
local_path = "Qwen/Qwen2.5-VL-7B-Instruct"
# Load model and processor
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
local_path, torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained(local_path)
# Function to process image and text and generate the output
@torch.inference_mode()
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
def generate_output(image, text, button_click):
# Prepare input data
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
],
}
]
# Prepare inputs for the model
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text_input],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Generate the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
# Create Gradio interface
iface = gr.Interface(
fn=generate_output,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(lines=2, placeholder="Enter a question related to the image", label="Input Text"),
],
outputs=gr.Textbox(label="Model Output"),
)
# Launch the Gradio interface
iface.launch()