Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
# Specify the local cache path for models | |
local_path = "Qwen/Qwen2.5-VL-7B-Instruct" | |
# Load model and processor | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
local_path, torch_dtype="auto", device_map="auto" | |
) | |
processor = AutoProcessor.from_pretrained(local_path) | |
# Function to process image and text and generate the output | |
# Specify a duration to avoid timeout | |
def generate_output(image, text, button_click): | |
# Prepare input data | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text}, | |
], | |
} | |
] | |
# Prepare inputs for the model | |
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text_input], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
# Generate the output | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0] | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_output, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Textbox(lines=2, placeholder="Enter a question related to the image", label="Input Text"), | |
], | |
outputs=gr.Textbox(label="Model Output"), | |
) | |
# Launch the Gradio interface | |
iface.launch() | |