Spaces:
Running
Running
File size: 21,461 Bytes
ddbbf37 b34bf6c ddbbf37 b34bf6c 9efc43a b34bf6c ddbbf37 9efc43a ddbbf37 9efc43a ddbbf37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
import gradio as gr
import pandas as pd
import numpy as np
import torch as th
from house_diffusion import dist_util
from house_diffusion.script_util import (
create_model_and_diffusion,
)
from PIL import Image
import io
import drawSvg as drawsvg
import cairosvg
from tqdm import tqdm
import webcolors
import tempfile
from pathlib import Path
import shutil
import os
ROOM_CLASS = {
'Living Room': 1, 'Kitchen': 2, 'Bedroom': 3, 'Bathroom': 4,
'Balcony': 5, 'Entrance': 6, 'Dining Room': 7, 'Study Room': 8,
'Storage': 10, 'Front Door': 11, 'Unknown': 13, 'Interior Door': 12
}
ROOM_CATEGORIES = {
'Living Room': 1, 'Kitchen': 2, 'Bedroom': 3, 'Bathroom': 4,
'Balcony': 5, 'Entrance': 6, 'Dining Room': 7, 'Study Room': 8,
'Storage': 10, 'Front Door': 11, 'Other': 13
}
def save_samples(
sample, ext, model_kwargs,
tmp_count, num_room_types,
# save_gif=False,
save_gif=True,
door_indices=[11, 12, 13], ID_COLOR=None,
is_syn=False, draw_graph=False, save_svg=False, metrics=False):
prefix = 'syn_' if is_syn else ''
graph_errors = []
print(sample.shape)
if not save_gif:
sample = sample[-1:]
for i in tqdm(range(sample.shape[1])):
resolution = 256
images = []
images2 = []
images3 = []
for k in range(sample.shape[0]):
draw_color = drawsvg.Drawing(resolution, resolution, displayInline=False)
draw_color.append(drawsvg.Rectangle(0, 0, resolution, resolution, fill='white'))
polys = []
types = []
for j, point in (enumerate(sample[k][i])):
if model_kwargs[f'{prefix}src_key_padding_mask'][i][j] == 1:
continue
point = point.cpu().data.numpy()
if j == 0:
poly = []
if j > 0 and (model_kwargs[f'{prefix}room_indices'][i, j] != model_kwargs[f'{prefix}room_indices'][
i, j - 1]).any():
polys.append(poly)
types.append(c)
poly = []
pred_center = False
if pred_center:
point = point / 2 + 1
point = point * resolution // 2
else:
point = point / 2 + 0.5
point = point * resolution
poly.append((point[0], point[1]))
c = np.argmax(model_kwargs[f'{prefix}room_types'][i][j - 1].cpu().numpy())
polys.append(poly)
types.append(c)
for poly, c in zip(polys, types):
if c in door_indices or c == 0:
continue
room_type = c
c = webcolors.hex_to_rgb(ID_COLOR[c])
draw_color.append(
drawsvg.Lines(*np.array(poly).flatten().tolist(), close=True, fill=ID_COLOR[room_type],
fill_opacity=1.0, stroke='black', stroke_width=1))
for poly, c in zip(polys, types):
if c not in door_indices:
continue
room_type = c
c = webcolors.hex_to_rgb(ID_COLOR[c])
# TODO --------------------------------------------------------------------------------------
# https://github.com/sakmalh/house_diffusion
line_lengths = [np.linalg.norm(np.array(poly[i]) - np.array(poly[(i + 1) % len(poly)])) for i in
range(len(poly))]
if metrics:
text_size = 5
for z, length in enumerate(line_lengths):
# Calculate the mid-point of the line segment
midpoint = ((poly[z][0] + poly[(z + 1) % len(poly)][0]) / 2,
(poly[z][1] + poly[(z + 1) % len(poly)][1]) / 2)
# Calculate x and y differences
x_diff = poly[z][0] - poly[(z + 1) % len(poly)][0]
y_diff = poly[z][1] - poly[(z + 1) % len(poly)][1]
# Determine text position adjustments based on differences
if int(y_diff) != 0:
if y_diff > 0:
text_x = midpoint[0] + text_size
text_y = midpoint[1]
draw_color.append(drawsvg.Line(
text_x, text_y + text_size, # Start point at the text label
poly[z][0] + text_size, poly[z][1], # End point at the polygon endpoint
stroke='black',
stroke_width=1
))
draw_color.append(drawsvg.Line(
text_x, text_y - text_size, # Start point at the text label
poly[(z + 1) % len(poly)][0] + text_size, poly[(z + 1) % len(poly)][1],
# End point at the polygon endpoint
stroke='black',
stroke_width=1
))
else:
text_x = midpoint[0] - text_size
text_y = midpoint[1]
draw_color.append(drawsvg.Line(
text_x, text_y - text_size, # Start point at the text label
poly[z][0] - text_size, poly[z][1], # End point at the polygon endpoint
stroke='black',
stroke_width=1
))
draw_color.append(drawsvg.Line(
text_x, text_y + text_size, # Start point at the text label
poly[(z + 1) % len(poly)][0] - text_size, poly[(z + 1) % len(poly)][1],
# End point at the polygon endpoint
stroke='black',
stroke_width=1
))
else:
if x_diff > 0:
text_x = midpoint[0]
text_y = midpoint[1] - text_size
draw_color.append(drawsvg.Line(
text_x + text_size, text_y, # Start point at the text label
poly[z][0], poly[z][1] - text_size, # End point at the polygon endpoint
stroke='black',
stroke_width=1
))
draw_color.append(drawsvg.Line(
text_x - text_size, text_y, # Start point at the text label
poly[(z + 1) % len(poly)][0], poly[(z + 1) % len(poly)][1] - text_size,
# End point at the polygon endpoint
stroke='black',
stroke_width=1
))
else:
text_x = midpoint[0]
text_y = midpoint[1] + text_size
draw_color.append(drawsvg.Line(
text_x - text_size, text_y, # Start point at the text label
poly[z][0], poly[z][1] + text_size, # End point at the polygon endpoint
stroke='black',
stroke_width=1
))
draw_color.append(drawsvg.Line(
text_x + text_size, text_y, # Start point at the text label
poly[(z + 1) % len(poly)][0], poly[(z + 1) % len(poly)][1] + text_size,
# End point at the polygon endpoint
stroke='black',
stroke_width=1
))
# Add the text label to the SVG
draw_color.append(
drawsvg.Text(
f'{int(abs(length))}', # Format the length to two decimal places
text_size,
text_x, text_y,
fill='black',
text_anchor='middle',
alignment_baseline='middle'
)
)
draw_color.append(
drawsvg.Lines(*np.array(poly).flatten().tolist(), close=True, fill=ID_COLOR[room_type],
fill_opacity=1.0, stroke='black', stroke_width=1))
if k == sample.shape[0] - 1 or True:
if save_svg:
# draw_color.saveSvg(f'outputs/{ext}/{tmp_count + i}c_{k}_{ext}.svg')
return draw_color
else:
Image.open(io.BytesIO(cairosvg.svg2png(draw_color.asSvg()))).save(
f'outputs/{ext}/{tmp_count + i}c_{ext}.png')
# if save_gif:
# imageio.mimwrite(f'outputs/gif/{tmp_count + i}.gif', images, fps=10, loop=1)
# imageio.mimwrite(f'outputs/gif/{tmp_count + i}_v2.gif', images2, fps=10, loop=1)
# imageio.mimwrite(f'outputs/gif/{tmp_count + i}_v3.gif', images3, fps=10, loop=1)
return graph_errors
def function_test(org_graphs, corners, room_type):
get_one_hot = lambda x, z: np.eye(z)[x]
max_num_points = 100
house = []
corner_bounds = []
num_points = 0
for i, room in enumerate(room_type):
# Adding conditions
num_room_corners = corners[i]
rtype = np.repeat(np.array([get_one_hot(room, 25)]), num_room_corners, 0)
room_index = np.repeat(np.array([get_one_hot(len(house) + 1, 32)]), num_room_corners, 0)
corner_index = np.array([get_one_hot(x, 32) for x in range(num_room_corners)])
# Src_key_padding_mask
padding_mask = np.repeat(1, num_room_corners)
padding_mask = np.expand_dims(padding_mask, 1)
# Generating corner bounds for attention masks
connections = np.array([[i, (i + 1) % num_room_corners] for i in range(num_room_corners)])
connections += num_points
corner_bounds.append([num_points, num_points + num_room_corners])
num_points += num_room_corners
room = np.concatenate((np.zeros([num_room_corners, 2]), rtype, corner_index, room_index,
padding_mask, connections), 1)
house.append(room)
house_layouts = np.concatenate(house, 0)
padding = np.zeros((max_num_points - len(house_layouts), 94))
gen_mask = np.ones((max_num_points, max_num_points))
gen_mask[:len(house_layouts), :len(house_layouts)] = 0
house_layouts = np.concatenate((house_layouts, padding), 0)
door_mask = np.ones((max_num_points, max_num_points))
self_mask = np.ones((max_num_points, max_num_points))
for i, room in enumerate(room_type):
if room == 1:
living_room_index = i
break
for i in range(len(corner_bounds)):
is_connected = False
for j in range(len(corner_bounds)):
if i == j:
self_mask[corner_bounds[i][0]:corner_bounds[i][1], corner_bounds[j][0]:corner_bounds[j][1]] = 0
elif any(np.equal([i, 1, j], org_graphs).all(1)) or any(np.equal([j, 1, i], org_graphs).all(1)):
door_mask[corner_bounds[i][0]:corner_bounds[i][1], corner_bounds[j][0]:corner_bounds[j][1]] = 0
is_connected = True
if not is_connected:
door_mask[corner_bounds[i][0]:corner_bounds[i][1],
corner_bounds[living_room_index][0]:corner_bounds[living_room_index][1]] = 0
syn_houses = house_layouts
syn_door_masks = door_mask
syn_self_masks = self_mask
syn_gen_masks = gen_mask
syn_graph = np.concatenate((org_graphs, np.zeros([200 - len(org_graphs), 3])), 0)
cond = {
'syn_door_mask': syn_door_masks,
'syn_self_mask': syn_self_masks,
'syn_gen_mask': syn_gen_masks,
'syn_room_types': syn_houses[:, 2:2 + 25],
'syn_corner_indices': syn_houses[:, 2 + 25:2 + 57],
'syn_room_indices': syn_houses[:, 2 + 57:2 + 89],
'syn_src_key_padding_mask': 1 - syn_houses[:, 2 + 89],
'syn_connections': syn_houses[:, 2 + 90:2 + 92],
'syn_graph': syn_graph,
}
return cond
def create_layout(graphs, corners, room_type, metrics=False, use_ddim=True, ddim_steps=100, num_samples=4):
model_path = "ckpt/model250000.pt"
steps = f"ddim{ddim_steps}"
args = {
"input_channels": 18,
"condition_channels": 89,
"num_channels": 512,
"out_channels": 2,
"dataset": "rplan",
"use_checkpoint": False,
"use_unet": False,
"learn_sigma": False,
"diffusion_steps": 1000,
"noise_schedule": "cosine",
"timestep_respacing": steps,
"use_kl": False,
"predict_xstart": False,
"rescale_timesteps": False,
"rescale_learned_sigmas": False,
"analog_bit": False,
"target_set": -1,
"set_name": "",
}
dist_util.setup_dist()
model, diffusion = create_model_and_diffusion(
args['input_channels'],
args['condition_channels'],
args['num_channels'],
args['out_channels'],
args['dataset'],
args['use_checkpoint'],
args['use_unet'],
args['learn_sigma'],
args['diffusion_steps'],
args['noise_schedule'],
args['timestep_respacing'],
args['use_kl'],
args['predict_xstart'],
args['rescale_timesteps'],
args['rescale_learned_sigmas'],
args['analog_bit'],
args['target_set'],
args['set_name'],
)
model.load_state_dict(
dist_util.load_state_dict(model_path, map_location="cpu")
)
model.to(dist_util.dev())
model.eval()
ID_COLOR = {1: '#EE4D4D', 2: '#C67C7B', 3: '#FFD274', 4: '#BEBEBE', 5: '#BFE3E8',
6: '#7BA779', 7: '#E87A90', 8: '#FF8C69', 10: '#1F849B', 11: '#727171',
13: '#785A67', 12: '#D3A2C7'}
num_room_types = 14
sample_fn = (diffusion.p_sample_loop if not use_ddim else diffusion.ddim_sample_loop)
print(graphs, corners, room_type)
model_kwargs = function_test(graphs, corners, room_type)
for key in model_kwargs:
# model_kwargs[key] = th.from_numpy(np.array([model_kwargs[key]])).cuda()
model_kwargs[key] = th.from_numpy(np.array([model_kwargs[key]])).cpu()
png_paths = []
svg_paths = []
for count in range(num_samples):
sample = sample_fn(
model,
th.Size([1, 2, 100]),
clip_denoised=True,
model_kwargs=model_kwargs,
)
sample = sample.permute([0, 1, 3, 2])
pred = save_samples(sample, 'pred', model_kwargs, count, num_room_types, ID_COLOR=ID_COLOR,
is_syn=True, draw_graph=False, save_svg=True, save_gif=False, metrics=metrics)
temp_svg_file = tempfile.NamedTemporaryFile(delete=False, suffix=".svg")
pred.saveSvg(temp_svg_file.name)
png_file_name = temp_svg_file.name.split(".")[0].split("/")[-1]
png_file_path = f'./generated_svgs/{png_file_name}.png'
# print(temp_svg_file.name)
# print(png_file_name)
# print(png_file_path)
Image.open(io.BytesIO(cairosvg.svg2png(pred.asSvg()))).save(png_file_path)
output_dir = Path("./generated_svgs")
output_dir.mkdir(parents=True, exist_ok=True)
file_name = temp_svg_file.name.split("/")[-1]
persistent_path = Path(f"{output_dir}/{file_name}")
shutil.move(temp_svg_file.name, persistent_path)
os.chmod(persistent_path, 0o644)
svg_paths.append(str(persistent_path))
png_paths.append(png_file_path)
# print(str(persistent_path))
return png_paths, svg_paths
rooms_data = []
edges_data = []
def generate_layout(metrics: bool, ddim_steps: int, num_samples: int):
room_list = []
room_corners = []
living_room = 0
front_door = False
entrance = -1
print(rooms_data)
print(edges_data)
for i, room in enumerate(rooms_data):
room_list.append(ROOM_CLASS[room['room_type']])
if room['num_corners'] != 0:
room_corners.append(int(room['num_corners']))
else:
room_corners.append(4)
if room['room_type'] == "Living Room":
living_room = i
elif room['room_type'] == "Entrance":
entrance = i
elif room['room_type'] == "Front Door":
front_door = True
edges = []
for edge in edges_data:
source_id = int(edge['room1_id'].split()[0])
target_id = int(edge['room2_id'].split()[0])
edges.append([source_id, 1, target_id])
index = len(room_list)
room_list.append(12)
room_corners.append(4)
edges.append([source_id, 1, index])
edges.append([target_id, 1, index])
if not front_door:
room_list.append(11)
room_corners.append(4)
if entrance == -1:
edges.append([len(room_list) - 1, 1, living_room])
else:
edges.append([len(room_list) - 1, 1, entrance])
if np.sum(room_corners) > 99:
return {"Error": "Number of Corners exceeded"}
print(room_list, room_corners, edges)
png_paths, svg_paths = create_layout(edges, room_corners, room_list, metrics=metrics, ddim_steps=ddim_steps,
num_samples=num_samples)
png_color_guide = './color_guide.png'
rooms_data.clear()
edges_data.clear()
rooms_df = pd.DataFrame(columns=["room_id", "room_type", "num_corners"])
edges_df = pd.DataFrame(columns=["edge_id", "room1_id", "room2_id"])
return png_paths, svg_paths, png_color_guide, rooms_df, edges_df
with gr.Blocks() as demo:
gr.Markdown("## House Layout Generator")
with gr.Row():
room_type = gr.Dropdown(label="Room Type", choices=list(ROOM_CATEGORIES.keys()), value="Living Room")
num_corners = gr.Number(label="Number of Corners", value=4)
add_room_button = gr.Button("Add Room")
with gr.Row():
room1_id = gr.Dropdown(label="Room 1", choices=[], value=None)
room2_id = gr.Dropdown(label="Room 2", choices=[], value=None)
add_edge_button = gr.Button("Add Edge")
rooms_table = gr.DataFrame(label="Rooms Table")
edges_table = gr.DataFrame(label="Edges Table")
metrics_toggle = gr.Checkbox(label="Include metrics", value=True)
ddim_input = gr.Number(label="DDIM steps", value=100)
num_sample = gr.Number(label="Number of samples", value=4)
png_gallery = gr.Gallery(label="Layout PNG Outputs", columns=4)
svg_files = gr.File(label="Layout SVG Outputs (higher quality)")
png_color_guide = gr.Image(label="Color Guide")
def add_room(room_type, num_corners):
room_id = len(rooms_data)
rooms_data.append({
"room_id": room_id,
"room_type": room_type,
"num_corners": num_corners
})
return update_rooms_and_edges()
def add_edge(room1_id, room2_id):
edge_id = len(edges_data)
edges_data.append({
"edge_id": edge_id,
"room1_id": room1_id,
"room2_id": room2_id
})
return update_rooms_and_edges()
def update_rooms_and_edges():
rooms_df = pd.DataFrame(rooms_data, columns=["room_id", "room_type", "num_corners"])
edges_df = pd.DataFrame(edges_data, columns=["edge_id", "room1_id", "room2_id"])
room_options = [f"{room['room_id']} {room['room_type']}" for room in rooms_data]
return rooms_df, edges_df, gr.update(choices=room_options, value=None), gr.update(choices=room_options,
value=None)
generate_button = gr.Button("Generate Layout")
# generate_button.click(generate_layout, inputs=[metrics_toggle, ddim_input, num_sample], outputs=[png_gallery, svg_files, png_color_guide])
generate_button.click(
generate_layout,
inputs=[metrics_toggle, ddim_input, num_sample],
outputs=[
png_gallery,
svg_files,
png_color_guide,
rooms_table,
edges_table
]
)
add_room_button.click(add_room, inputs=[room_type, num_corners],
outputs=[rooms_table, edges_table, room1_id, room2_id])
add_edge_button.click(add_edge, inputs=[room1_id, room2_id], outputs=[rooms_table, edges_table, room1_id, room2_id])
demo.launch()
# global demo
# demo.launch(share=True)
|