File size: 21,461 Bytes
ddbbf37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b34bf6c
 
ddbbf37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b34bf6c
 
 
9efc43a
b34bf6c
ddbbf37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9efc43a
 
 
 
 
 
 
ddbbf37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9efc43a
 
 
 
 
 
 
 
 
 
 
 
ddbbf37
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import gradio as gr
import pandas as pd
import numpy as np
import torch as th
from house_diffusion import dist_util
from house_diffusion.script_util import (
    create_model_and_diffusion,
)
from PIL import Image

import io
import drawSvg as drawsvg
import cairosvg
from tqdm import tqdm

import webcolors
import tempfile
from pathlib import Path
import shutil
import os


ROOM_CLASS = {
    'Living Room': 1, 'Kitchen': 2, 'Bedroom': 3, 'Bathroom': 4,
    'Balcony': 5, 'Entrance': 6, 'Dining Room': 7, 'Study Room': 8,
    'Storage': 10, 'Front Door': 11, 'Unknown': 13, 'Interior Door': 12
}
ROOM_CATEGORIES = {
    'Living Room': 1, 'Kitchen': 2, 'Bedroom': 3, 'Bathroom': 4,
    'Balcony': 5, 'Entrance': 6, 'Dining Room': 7, 'Study Room': 8,
    'Storage': 10, 'Front Door': 11, 'Other': 13
}


def save_samples(
        sample, ext, model_kwargs,
        tmp_count, num_room_types,
        # save_gif=False,
        save_gif=True,
        door_indices=[11, 12, 13], ID_COLOR=None,
        is_syn=False, draw_graph=False, save_svg=False, metrics=False):
    prefix = 'syn_' if is_syn else ''
    graph_errors = []

    print(sample.shape)

    if not save_gif:
        sample = sample[-1:]
    for i in tqdm(range(sample.shape[1])):
        resolution = 256
        images = []
        images2 = []
        images3 = []
        for k in range(sample.shape[0]):
            draw_color = drawsvg.Drawing(resolution, resolution, displayInline=False)
            draw_color.append(drawsvg.Rectangle(0, 0, resolution, resolution, fill='white'))
            polys = []
            types = []
            for j, point in (enumerate(sample[k][i])):
                if model_kwargs[f'{prefix}src_key_padding_mask'][i][j] == 1:
                    continue
                point = point.cpu().data.numpy()
                if j == 0:
                    poly = []
                if j > 0 and (model_kwargs[f'{prefix}room_indices'][i, j] != model_kwargs[f'{prefix}room_indices'][
                    i, j - 1]).any():
                    polys.append(poly)
                    types.append(c)
                    poly = []
                pred_center = False
                if pred_center:
                    point = point / 2 + 1
                    point = point * resolution // 2
                else:
                    point = point / 2 + 0.5
                    point = point * resolution
                poly.append((point[0], point[1]))
                c = np.argmax(model_kwargs[f'{prefix}room_types'][i][j - 1].cpu().numpy())
            polys.append(poly)
            types.append(c)
            for poly, c in zip(polys, types):
                if c in door_indices or c == 0:
                    continue
                room_type = c
                c = webcolors.hex_to_rgb(ID_COLOR[c])
                draw_color.append(
                    drawsvg.Lines(*np.array(poly).flatten().tolist(), close=True, fill=ID_COLOR[room_type],
                                  fill_opacity=1.0, stroke='black', stroke_width=1))

            for poly, c in zip(polys, types):
                if c not in door_indices:
                    continue
                room_type = c
                c = webcolors.hex_to_rgb(ID_COLOR[c])

                # TODO --------------------------------------------------------------------------------------
                # https://github.com/sakmalh/house_diffusion
                line_lengths = [np.linalg.norm(np.array(poly[i]) - np.array(poly[(i + 1) % len(poly)])) for i in
                                range(len(poly))]

                if metrics:
                    text_size = 5
                    for z, length in enumerate(line_lengths):
                        # Calculate the mid-point of the line segment
                        midpoint = ((poly[z][0] + poly[(z + 1) % len(poly)][0]) / 2,
                                    (poly[z][1] + poly[(z + 1) % len(poly)][1]) / 2)

                        # Calculate x and y differences
                        x_diff = poly[z][0] - poly[(z + 1) % len(poly)][0]
                        y_diff = poly[z][1] - poly[(z + 1) % len(poly)][1]

                        # Determine text position adjustments based on differences
                        if int(y_diff) != 0:
                            if y_diff > 0:
                                text_x = midpoint[0] + text_size
                                text_y = midpoint[1]

                                draw_color.append(drawsvg.Line(
                                    text_x, text_y + text_size,  # Start point at the text label
                                            poly[z][0] + text_size, poly[z][1],  # End point at the polygon endpoint
                                    stroke='black',
                                    stroke_width=1
                                ))

                                draw_color.append(drawsvg.Line(
                                    text_x, text_y - text_size,  # Start point at the text label
                                            poly[(z + 1) % len(poly)][0] + text_size, poly[(z + 1) % len(poly)][1],
                                    # End point at the polygon endpoint
                                    stroke='black',
                                    stroke_width=1
                                ))
                            else:
                                text_x = midpoint[0] - text_size
                                text_y = midpoint[1]

                                draw_color.append(drawsvg.Line(
                                    text_x, text_y - text_size,  # Start point at the text label
                                            poly[z][0] - text_size, poly[z][1],  # End point at the polygon endpoint
                                    stroke='black',
                                    stroke_width=1
                                ))

                                draw_color.append(drawsvg.Line(
                                    text_x, text_y + text_size,  # Start point at the text label
                                            poly[(z + 1) % len(poly)][0] - text_size, poly[(z + 1) % len(poly)][1],
                                    # End point at the polygon endpoint
                                    stroke='black',
                                    stroke_width=1
                                ))
                        else:
                            if x_diff > 0:
                                text_x = midpoint[0]
                                text_y = midpoint[1] - text_size

                                draw_color.append(drawsvg.Line(
                                    text_x + text_size, text_y,  # Start point at the text label
                                    poly[z][0], poly[z][1] - text_size,  # End point at the polygon endpoint
                                    stroke='black',
                                    stroke_width=1
                                ))

                                draw_color.append(drawsvg.Line(
                                    text_x - text_size, text_y,  # Start point at the text label
                                    poly[(z + 1) % len(poly)][0], poly[(z + 1) % len(poly)][1] - text_size,
                                    # End point at the polygon endpoint
                                    stroke='black',
                                    stroke_width=1
                                ))
                            else:
                                text_x = midpoint[0]
                                text_y = midpoint[1] + text_size

                                draw_color.append(drawsvg.Line(
                                    text_x - text_size, text_y,  # Start point at the text label
                                    poly[z][0], poly[z][1] + text_size,  # End point at the polygon endpoint
                                    stroke='black',
                                    stroke_width=1
                                ))

                                draw_color.append(drawsvg.Line(
                                    text_x + text_size, text_y,  # Start point at the text label
                                    poly[(z + 1) % len(poly)][0], poly[(z + 1) % len(poly)][1] + text_size,
                                    # End point at the polygon endpoint
                                    stroke='black',
                                    stroke_width=1
                                ))

                        # Add the text label to the SVG
                        draw_color.append(
                            drawsvg.Text(
                                f'{int(abs(length))}',  # Format the length to two decimal places
                                text_size,
                                text_x, text_y,
                                fill='black',
                                text_anchor='middle',
                                alignment_baseline='middle'
                            )
                        )

                draw_color.append(
                    drawsvg.Lines(*np.array(poly).flatten().tolist(), close=True, fill=ID_COLOR[room_type],
                                  fill_opacity=1.0, stroke='black', stroke_width=1))

            if k == sample.shape[0] - 1 or True:
                if save_svg:
                    # draw_color.saveSvg(f'outputs/{ext}/{tmp_count + i}c_{k}_{ext}.svg')
                    return draw_color
                else:
                    Image.open(io.BytesIO(cairosvg.svg2png(draw_color.asSvg()))).save(
                        f'outputs/{ext}/{tmp_count + i}c_{ext}.png')

        # if save_gif:
        #     imageio.mimwrite(f'outputs/gif/{tmp_count + i}.gif', images, fps=10, loop=1)
        #     imageio.mimwrite(f'outputs/gif/{tmp_count + i}_v2.gif', images2, fps=10, loop=1)
        #     imageio.mimwrite(f'outputs/gif/{tmp_count + i}_v3.gif', images3, fps=10, loop=1)
    return graph_errors


def function_test(org_graphs, corners, room_type):
    get_one_hot = lambda x, z: np.eye(z)[x]
    max_num_points = 100

    house = []
    corner_bounds = []
    num_points = 0

    for i, room in enumerate(room_type):
        # Adding conditions
        num_room_corners = corners[i]
        rtype = np.repeat(np.array([get_one_hot(room, 25)]), num_room_corners, 0)
        room_index = np.repeat(np.array([get_one_hot(len(house) + 1, 32)]), num_room_corners, 0)
        corner_index = np.array([get_one_hot(x, 32) for x in range(num_room_corners)])
        # Src_key_padding_mask
        padding_mask = np.repeat(1, num_room_corners)
        padding_mask = np.expand_dims(padding_mask, 1)
        # Generating corner bounds for attention masks
        connections = np.array([[i, (i + 1) % num_room_corners] for i in range(num_room_corners)])
        connections += num_points
        corner_bounds.append([num_points, num_points + num_room_corners])
        num_points += num_room_corners
        room = np.concatenate((np.zeros([num_room_corners, 2]), rtype, corner_index, room_index,
                               padding_mask, connections), 1)
        house.append(room)

    house_layouts = np.concatenate(house, 0)
    padding = np.zeros((max_num_points - len(house_layouts), 94))
    gen_mask = np.ones((max_num_points, max_num_points))
    gen_mask[:len(house_layouts), :len(house_layouts)] = 0
    house_layouts = np.concatenate((house_layouts, padding), 0)

    door_mask = np.ones((max_num_points, max_num_points))
    self_mask = np.ones((max_num_points, max_num_points))
    for i, room in enumerate(room_type):
        if room == 1:
            living_room_index = i
            break
    for i in range(len(corner_bounds)):
        is_connected = False
        for j in range(len(corner_bounds)):
            if i == j:
                self_mask[corner_bounds[i][0]:corner_bounds[i][1], corner_bounds[j][0]:corner_bounds[j][1]] = 0
            elif any(np.equal([i, 1, j], org_graphs).all(1)) or any(np.equal([j, 1, i], org_graphs).all(1)):
                door_mask[corner_bounds[i][0]:corner_bounds[i][1], corner_bounds[j][0]:corner_bounds[j][1]] = 0
                is_connected = True
        if not is_connected:
            door_mask[corner_bounds[i][0]:corner_bounds[i][1],
            corner_bounds[living_room_index][0]:corner_bounds[living_room_index][1]] = 0

    syn_houses = house_layouts
    syn_door_masks = door_mask
    syn_self_masks = self_mask
    syn_gen_masks = gen_mask

    syn_graph = np.concatenate((org_graphs, np.zeros([200 - len(org_graphs), 3])), 0)

    cond = {
        'syn_door_mask': syn_door_masks,
        'syn_self_mask': syn_self_masks,
        'syn_gen_mask': syn_gen_masks,
        'syn_room_types': syn_houses[:, 2:2 + 25],
        'syn_corner_indices': syn_houses[:, 2 + 25:2 + 57],
        'syn_room_indices': syn_houses[:, 2 + 57:2 + 89],
        'syn_src_key_padding_mask': 1 - syn_houses[:, 2 + 89],
        'syn_connections': syn_houses[:, 2 + 90:2 + 92],
        'syn_graph': syn_graph,
    }

    return cond


def create_layout(graphs, corners, room_type, metrics=False, use_ddim=True, ddim_steps=100, num_samples=4):
    model_path = "ckpt/model250000.pt"
    steps = f"ddim{ddim_steps}"
    args = {
        "input_channels": 18,
        "condition_channels": 89,
        "num_channels": 512,
        "out_channels": 2,
        "dataset": "rplan",
        "use_checkpoint": False,
        "use_unet": False,
        "learn_sigma": False,
        "diffusion_steps": 1000,
        "noise_schedule": "cosine",
        "timestep_respacing": steps,
        "use_kl": False,
        "predict_xstart": False,
        "rescale_timesteps": False,
        "rescale_learned_sigmas": False,
        "analog_bit": False,
        "target_set": -1,
        "set_name": "",
    }

    dist_util.setup_dist()
    model, diffusion = create_model_and_diffusion(
        args['input_channels'],
        args['condition_channels'],
        args['num_channels'],
        args['out_channels'],
        args['dataset'],
        args['use_checkpoint'],
        args['use_unet'],
        args['learn_sigma'],
        args['diffusion_steps'],
        args['noise_schedule'],
        args['timestep_respacing'],
        args['use_kl'],
        args['predict_xstart'],
        args['rescale_timesteps'],
        args['rescale_learned_sigmas'],
        args['analog_bit'],
        args['target_set'],
        args['set_name'],
    )
    model.load_state_dict(
        dist_util.load_state_dict(model_path, map_location="cpu")
    )
    model.to(dist_util.dev())
    model.eval()
    ID_COLOR = {1: '#EE4D4D', 2: '#C67C7B', 3: '#FFD274', 4: '#BEBEBE', 5: '#BFE3E8',
                6: '#7BA779', 7: '#E87A90', 8: '#FF8C69', 10: '#1F849B', 11: '#727171',
                13: '#785A67', 12: '#D3A2C7'}
    num_room_types = 14
    sample_fn = (diffusion.p_sample_loop if not use_ddim else diffusion.ddim_sample_loop)
    print(graphs, corners, room_type)
    model_kwargs = function_test(graphs, corners, room_type)
    for key in model_kwargs:
        # model_kwargs[key] = th.from_numpy(np.array([model_kwargs[key]])).cuda()
        model_kwargs[key] = th.from_numpy(np.array([model_kwargs[key]])).cpu()

    png_paths = []
    svg_paths = []
    for count in range(num_samples):
        sample = sample_fn(
            model,
            th.Size([1, 2, 100]),
            clip_denoised=True,
            model_kwargs=model_kwargs,
        )

        sample = sample.permute([0, 1, 3, 2])

        pred = save_samples(sample, 'pred', model_kwargs, count, num_room_types, ID_COLOR=ID_COLOR,
                            is_syn=True, draw_graph=False, save_svg=True, save_gif=False, metrics=metrics)

        temp_svg_file = tempfile.NamedTemporaryFile(delete=False, suffix=".svg")
        pred.saveSvg(temp_svg_file.name)
        png_file_name = temp_svg_file.name.split(".")[0].split("/")[-1]
        png_file_path = f'./generated_svgs/{png_file_name}.png'
        # print(temp_svg_file.name)
        # print(png_file_name)
        # print(png_file_path)

        Image.open(io.BytesIO(cairosvg.svg2png(pred.asSvg()))).save(png_file_path)

        output_dir = Path("./generated_svgs")
        output_dir.mkdir(parents=True, exist_ok=True)
        file_name = temp_svg_file.name.split("/")[-1]
        persistent_path = Path(f"{output_dir}/{file_name}")
        shutil.move(temp_svg_file.name, persistent_path)
        os.chmod(persistent_path, 0o644)

        svg_paths.append(str(persistent_path))
        png_paths.append(png_file_path)
        # print(str(persistent_path))

    return png_paths, svg_paths


rooms_data = []
edges_data = []


def generate_layout(metrics: bool, ddim_steps: int, num_samples: int):
    room_list = []
    room_corners = []
    living_room = 0
    front_door = False
    entrance = -1

    print(rooms_data)
    print(edges_data)

    for i, room in enumerate(rooms_data):
        room_list.append(ROOM_CLASS[room['room_type']])
        if room['num_corners'] != 0:
            room_corners.append(int(room['num_corners']))
        else:
            room_corners.append(4)

        if room['room_type'] == "Living Room":
            living_room = i

        elif room['room_type'] == "Entrance":
            entrance = i

        elif room['room_type'] == "Front Door":
            front_door = True

    edges = []
    for edge in edges_data:
        source_id = int(edge['room1_id'].split()[0])
        target_id = int(edge['room2_id'].split()[0])
        edges.append([source_id, 1, target_id])

        index = len(room_list)
        room_list.append(12)
        room_corners.append(4)
        edges.append([source_id, 1, index])
        edges.append([target_id, 1, index])

    if not front_door:
        room_list.append(11)
        room_corners.append(4)
        if entrance == -1:
            edges.append([len(room_list) - 1, 1, living_room])
        else:
            edges.append([len(room_list) - 1, 1, entrance])

    if np.sum(room_corners) > 99:
        return {"Error": "Number of Corners exceeded"}

    print(room_list, room_corners, edges)
    png_paths, svg_paths = create_layout(edges, room_corners, room_list, metrics=metrics, ddim_steps=ddim_steps,
                             num_samples=num_samples)

    png_color_guide = './color_guide.png'

    rooms_data.clear()
    edges_data.clear()

    rooms_df = pd.DataFrame(columns=["room_id", "room_type", "num_corners"])
    edges_df = pd.DataFrame(columns=["edge_id", "room1_id", "room2_id"])

    return png_paths, svg_paths, png_color_guide, rooms_df, edges_df


with gr.Blocks() as demo:
    gr.Markdown("## House Layout Generator")

    with gr.Row():
        room_type = gr.Dropdown(label="Room Type", choices=list(ROOM_CATEGORIES.keys()), value="Living Room")
        num_corners = gr.Number(label="Number of Corners", value=4)
        add_room_button = gr.Button("Add Room")

    with gr.Row():
        room1_id = gr.Dropdown(label="Room 1", choices=[], value=None)
        room2_id = gr.Dropdown(label="Room 2", choices=[], value=None)
        add_edge_button = gr.Button("Add Edge")

    rooms_table = gr.DataFrame(label="Rooms Table")
    edges_table = gr.DataFrame(label="Edges Table")

    metrics_toggle = gr.Checkbox(label="Include metrics", value=True)
    ddim_input = gr.Number(label="DDIM steps", value=100)
    num_sample = gr.Number(label="Number of samples", value=4)

    png_gallery = gr.Gallery(label="Layout PNG Outputs", columns=4)
    svg_files = gr.File(label="Layout SVG Outputs (higher quality)")
    png_color_guide = gr.Image(label="Color Guide")

    def add_room(room_type, num_corners):
        room_id = len(rooms_data)
        rooms_data.append({
            "room_id": room_id,
            "room_type": room_type,
            "num_corners": num_corners
        })
        return update_rooms_and_edges()


    def add_edge(room1_id, room2_id):
        edge_id = len(edges_data)
        edges_data.append({
            "edge_id": edge_id,
            "room1_id": room1_id,
            "room2_id": room2_id
        })
        return update_rooms_and_edges()


    def update_rooms_and_edges():
        rooms_df = pd.DataFrame(rooms_data, columns=["room_id", "room_type", "num_corners"])
        edges_df = pd.DataFrame(edges_data, columns=["edge_id", "room1_id", "room2_id"])
        room_options = [f"{room['room_id']} {room['room_type']}" for room in rooms_data]
        return rooms_df, edges_df, gr.update(choices=room_options, value=None), gr.update(choices=room_options,
                                                                                          value=None)


    generate_button = gr.Button("Generate Layout")
    # generate_button.click(generate_layout, inputs=[metrics_toggle, ddim_input, num_sample], outputs=[png_gallery, svg_files, png_color_guide])
    generate_button.click(
        generate_layout,
        inputs=[metrics_toggle, ddim_input, num_sample],
        outputs=[
            png_gallery,
            svg_files,
            png_color_guide,
            rooms_table,
            edges_table
        ]
    )
    add_room_button.click(add_room, inputs=[room_type, num_corners],
                          outputs=[rooms_table, edges_table, room1_id, room2_id])
    add_edge_button.click(add_edge, inputs=[room1_id, room2_id], outputs=[rooms_table, edges_table, room1_id, room2_id])


demo.launch()
# global demo
# demo.launch(share=True)