File size: 5,017 Bytes
ddbbf37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import inspect

from . import gaussian_diffusion as gd
from .respace import SpacedDiffusion, space_timesteps
from .transformer import TransformerModel

def diffusion_defaults():
    """
    Defaults for image and classifier training.
    """
    return dict(
        analog_bit=False,
        learn_sigma=False,
        # diffusion_steps=25,
        diffusion_steps=1000,
        noise_schedule="cosine",
        timestep_respacing="ddim100",
        use_kl=False,
        predict_xstart=False,
        rescale_timesteps=False,
        rescale_learned_sigmas=False,
        # target_set=-1,

        # target_set=4,
        # target_set=5,
        # target_set=6,
        # target_set=7,
        target_set=8,

        set_name='',
    )

def update_arg_parser(args):
    args.num_channels = 512
    num_coords = 16 if args.analog_bit else 2
    if args.dataset=='rplan':
        args.input_channels = num_coords + (2*8 if not args.analog_bit else 0) # . , . , . , . , '
        args.condition_channels = 89
        args.out_channels = num_coords * 1
        args.use_unet = False

    elif args.dataset=='st3d':
        args.input_channels = num_coords + (2*8 if not args.analog_bit else 0) # . , . , . , . , '
        args.condition_channels = 89
        args.out_channels = num_coords * 1
        args.use_unet = False

    elif args.dataset=='zind':
        args.input_channels = num_coords + 2 * 8
        args.condition_channels = 89
        args.out_channels = num_coords * 1
        args.use_unet = False

    elif args.dataset=='layout':
        args.use_unet = True
        pass #TODO NEED TO COMPLETE

    elif args.dataset=='outdoor':
        args.use_unet = True
        pass #TODO NEED TO COMPLETE
    else:
        assert False, "DATASET NOT FOUND"

def model_and_diffusion_defaults():
    """
    Defaults for image training.
    """
    res = dict(
            dataset='rplan',
            # dataset='',
            use_checkpoint=False,
            input_channels=0,
            condition_channels=0,
            out_channels=0,
            use_unet=False,
            num_channels=128
            )
    res.update(diffusion_defaults())
    return res

def create_model_and_diffusion(
    input_channels,
    condition_channels,
    num_channels,
    out_channels,
    dataset,
    use_checkpoint,
    use_unet,
    learn_sigma,
    diffusion_steps,
    noise_schedule,
    timestep_respacing,
    use_kl,
    predict_xstart,
    rescale_timesteps,
    rescale_learned_sigmas,
    analog_bit,
    target_set,
    set_name,
):
    model = TransformerModel(input_channels, condition_channels, num_channels, out_channels, dataset, use_checkpoint, use_unet, analog_bit)

    diffusion = create_gaussian_diffusion(
        steps=diffusion_steps,
        learn_sigma=learn_sigma,
        noise_schedule=noise_schedule,
        use_kl=use_kl,
        predict_xstart=predict_xstart,
        rescale_timesteps=rescale_timesteps,
        rescale_learned_sigmas=rescale_learned_sigmas,
        timestep_respacing=timestep_respacing,
    )
    return model, diffusion

def create_gaussian_diffusion(
    *,
    steps=1000,
    learn_sigma=False,
    sigma_small=False,
    noise_schedule="linear",
    use_kl=False,
    predict_xstart=False,
    rescale_timesteps=False,
    rescale_learned_sigmas=False,
    timestep_respacing="",
):
    betas = gd.get_named_beta_schedule(noise_schedule, steps)
    if use_kl:
        loss_type = gd.LossType.RESCALED_KL
    elif rescale_learned_sigmas:
        loss_type = gd.LossType.RESCALED_MSE
    else:
        loss_type = gd.LossType.MSE
    if not timestep_respacing:
        timestep_respacing = [steps]
    return SpacedDiffusion(
        use_timesteps=space_timesteps(steps, timestep_respacing),
        betas=betas,
        model_mean_type=(
            gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
        ),
        model_var_type=(
            (
                gd.ModelVarType.FIXED_LARGE
                if not sigma_small
                else gd.ModelVarType.FIXED_SMALL
            )
            if not learn_sigma
            else gd.ModelVarType.LEARNED_RANGE
        ),
        loss_type=loss_type,
        rescale_timesteps=rescale_timesteps,
    )


def add_dict_to_argparser(parser, default_dict):
    for k, v in default_dict.items():
        v_type = type(v)
        if v is None:
            v_type = str
        elif isinstance(v, bool):
            v_type = str2bool
        parser.add_argument(f"--{k}", default=v, type=v_type)


def args_to_dict(args, keys):
    return {k: getattr(args, k) for k in keys}


def str2bool(v):
    """
    https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
    """
    if isinstance(v, bool):
        return v
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("boolean value expected")