Spaces:
Running
Running
import copy | |
import functools | |
import os | |
import blobfile as bf | |
import torch as th | |
import torch.distributed as dist | |
from torch.nn.parallel.distributed import DistributedDataParallel as DDP | |
from torch.optim import AdamW | |
from . import dist_util, logger | |
from .fp16_util import MixedPrecisionTrainer | |
from .nn import update_ema | |
from .resample import LossAwareSampler, UniformSampler | |
# For ImageNet experiments, this was a good default value. | |
# We found that the lg_loss_scale quickly climbed to | |
# 20-21 within the first ~1K steps of training. | |
INITIAL_LOG_LOSS_SCALE = 20.0 | |
class TrainLoop: | |
def __init__( | |
self, | |
*, | |
model, | |
diffusion, | |
data, | |
batch_size, | |
microbatch, | |
lr, | |
ema_rate, | |
log_interval, | |
save_interval, | |
resume_checkpoint, | |
use_fp16=False, | |
fp16_scale_growth=1e-3, | |
schedule_sampler=None, | |
weight_decay=0.0, | |
lr_anneal_steps=0, | |
analog_bit=None, | |
): | |
self.analog_bit = analog_bit | |
self.model = model | |
self.diffusion = diffusion | |
self.data = data | |
self.batch_size = batch_size | |
self.microbatch = microbatch if microbatch > 0 else batch_size | |
self.lr = lr | |
self.ema_rate = ( | |
[ema_rate] | |
if isinstance(ema_rate, float) | |
else [float(x) for x in ema_rate.split(",")] | |
) | |
self.log_interval = log_interval | |
self.save_interval = save_interval | |
self.resume_checkpoint = resume_checkpoint | |
self.use_fp16 = use_fp16 | |
self.fp16_scale_growth = fp16_scale_growth | |
self.schedule_sampler = schedule_sampler or UniformSampler(diffusion) | |
self.weight_decay = weight_decay | |
self.lr_anneal_steps = lr_anneal_steps | |
self.step = 0 | |
self.resume_step = 0 | |
self.global_batch = self.batch_size * dist.get_world_size() | |
self.sync_cuda = th.cuda.is_available() | |
# TODO ------------------------------------------------------------------------ | |
pretrained_path = "../ckpts/exp/model250000.pt" | |
pretrained_path = False | |
if pretrained_path: | |
self.load_pretrained(pretrained_path) | |
self.count_parameters_by_layer() | |
from .transformer_models import TransformerModels | |
device = th.device('cuda' if th.cuda.is_available() else 'cpu') | |
# self.model.to(device) | |
# print(th.get_default_device()) | |
# th.set_default_device('cuda') | |
# print(th.get_default_device()) | |
transformer_model = TransformerModels(self.model, device) | |
self.model_name = "Def" | |
# self.model = transformer_model.replace_InstanceNorm1d_LayerNorm() | |
# self.model_name = "Norm_LayerNorm" | |
# self.model = transformer_model.set_affine_true_for_instance_norm() | |
# self.model_name = "Norm_affine" | |
# | |
# self.model = transformer_model.replace_activation_function("GELU") | |
# self.model_name = "Activation_GELU" | |
# self.model = transformer_model.replace_activation_function("LeakyReLU") | |
# self.model_name = "Activation_LeakyRelu" | |
# self.model = transformer_model.replace_activation_function("ELU") | |
# self.model_name = "Activation_ELU" | |
# self.model = transformer_model.replace_activation_function("Mish") | |
# self.model_name = "Activation_Mish" | |
# | |
# self.model = transformer_model.add_encoder_layers(num_new_layers=2) | |
# self.model_name = "EncoderLayers_2" | |
# self.model = transformer_model.add_encoder_layers(num_new_layers=4) | |
# self.model_name = "EncoderLayers_4" | |
# | |
# self.model = transformer_model.dropout_value_change(val=0.01) | |
# self.model_name = "Dropout_01" | |
# self.model = transformer_model.dropout_value_change(val=0.001) | |
# self.model_name = "Dropout_001" | |
# self.model = transformer_model.dropout_value_change(val=0.9) | |
# self.model_name = "Dropout_9" | |
# | |
# self.model = transformer_model.change_linear_output_layers() | |
# self.model_name = "OutputLayer" | |
# | |
# self.model = transformer_model.add_cross_attention() | |
# self.model_name = "CrossAttention" | |
# | |
# self.model_name = "lr_001" | |
# self.model_name = "lr_00001" | |
# | |
# self.model_name = "wd_01" | |
self.model_name = "" | |
print(self.model) | |
self.count_parameters_by_layer() | |
# TODO ------------------------------------------------------------------------ | |
self.mp_trainer = MixedPrecisionTrainer( | |
model=self.model, | |
use_fp16=self.use_fp16, | |
fp16_scale_growth=fp16_scale_growth, | |
) | |
self.opt = AdamW( | |
self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay | |
) | |
if self.resume_step: | |
self._load_optimizer_state() | |
# Model was resumed, either due to a restart or a checkpoint | |
# being specified at the command line. | |
self.ema_params = [ | |
self._load_ema_parameters(rate) for rate in self.ema_rate | |
] | |
else: | |
self.ema_params = [ | |
copy.deepcopy(self.mp_trainer.master_params) | |
for _ in range(len(self.ema_rate)) | |
] | |
if th.cuda.is_available(): | |
self.use_ddp = True | |
self.ddp_model = DDP( | |
self.model, | |
device_ids=[dist_util.dev()], | |
output_device=dist_util.dev(), | |
broadcast_buffers=False, | |
bucket_cap_mb=128, | |
find_unused_parameters=False, | |
) | |
else: | |
if dist.get_world_size() > 1: | |
logger.warn( | |
"Distributed training requires CUDA. " | |
"Gradients will not be synchronized properly!" | |
) | |
self.use_ddp = False | |
self.ddp_model = self.model | |
# TODO---------------------------------------------------------------------------------- | |
def count_parameters(self): | |
model = self.model | |
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
untrainable_params = sum(p.numel() for p in model.parameters() if not p.requires_grad) | |
print(f"Trainable parameters: {trainable_params}") | |
print(f"Untrainable parameters: {untrainable_params}") | |
return trainable_params, untrainable_params | |
def count_parameters_by_layer(self): | |
print(f"{'Layer':<55} {'Trainable Params':<20} {'Untrainable Params':<20}") | |
print("=" * 95) | |
for name, param in self.model.named_parameters(): | |
if param.requires_grad: | |
trainable_params = param.numel() | |
untrainable_params = 0 | |
else: | |
trainable_params = 0 | |
untrainable_params = param.numel() | |
print(f"{name:<55} {trainable_params:<20} {untrainable_params:<20}") | |
print("=" * 95) | |
total_trainable = sum(p.numel() for p in self.model.parameters() if p.requires_grad) | |
total_untrainable = sum(p.numel() for p in self.model.parameters() if not p.requires_grad) | |
print(f"{'Total':<55} {total_trainable:<20} {total_untrainable:<20}") | |
def load_pretrained(self, pretrained_path): | |
state_dict = th.load(pretrained_path, map_location=dist_util.dev()) | |
self.model.load_state_dict(state_dict) | |
print(self.model) | |
logger.log(f"Loaded pretrained model from {pretrained_path}") | |
# -------------------------------------------------------------------------------------- | |
def _load_and_sync_parameters(self): | |
resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint | |
if resume_checkpoint: | |
self.resume_step = parse_resume_step_from_filename(resume_checkpoint) | |
# if dist.get_rank() == 0: | |
logger.log(f"loading model from checkpoint: {resume_checkpoint}...") | |
self.model.load_state_dict( | |
dist_util.load_state_dict( | |
resume_checkpoint, map_location=dist_util.dev() | |
) | |
) | |
dist_util.sync_params(self.model.parameters()) | |
def _load_ema_parameters(self, rate): | |
ema_params = copy.deepcopy(self.mp_trainer.master_params) | |
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint | |
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate) | |
if ema_checkpoint: | |
if dist.get_rank() == 0: | |
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...") | |
state_dict = dist_util.load_state_dict( | |
ema_checkpoint, map_location=dist_util.dev() | |
) | |
ema_params = self.mp_trainer.state_dict_to_master_params(state_dict) | |
dist_util.sync_params(ema_params) | |
return ema_params | |
def _load_optimizer_state(self): | |
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint | |
opt_checkpoint = bf.join( | |
bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt" | |
) | |
if bf.exists(opt_checkpoint): | |
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}") | |
state_dict = dist_util.load_state_dict( | |
opt_checkpoint, map_location=dist_util.dev() | |
) | |
self.opt.load_state_dict(state_dict) | |
def run_loop(self): | |
while ( | |
not self.lr_anneal_steps | |
or self.step + self.resume_step < self.lr_anneal_steps | |
): | |
batch, cond = next(self.data) | |
self.run_step(batch, cond) | |
# TODO: change 100000 for new lr | |
if self.step % 100000 == 0: | |
lr = self.lr * (0.1 ** (self.step // 100000)) | |
logger.log(f"Step {self.step}: Updating learning rate to {lr}") | |
for param_group in self.opt.param_groups: | |
param_group["lr"] = lr | |
if self.step % self.log_interval == 0: | |
logger.dumpkvs() | |
if self.step % self.save_interval == 0 and self.step > 0: | |
self.save() | |
# Run for a finite amount of time in integration tests. | |
if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0: | |
return | |
self.step += 1 | |
# Save the last checkpoint if it wasn't already saved. | |
if (self.step - 1) % self.save_interval != 0: | |
self.save() | |
def run_step(self, batch, cond): | |
self.forward_backward(batch, cond) | |
took_step = self.mp_trainer.optimize(self.opt) | |
if took_step: | |
self._update_ema() | |
self._anneal_lr() | |
self.log_step() | |
def forward_backward(self, batch, cond): | |
self.mp_trainer.zero_grad() | |
for i in range(0, batch.shape[0], self.microbatch): | |
micro = batch[i: i + self.microbatch].to(dist_util.dev()) | |
micro_cond = { | |
k: v[i: i + self.microbatch].to(dist_util.dev()) | |
for k, v in cond.items() | |
} | |
model_kwargs = micro_cond | |
last_batch = (i + self.microbatch) >= batch.shape[0] | |
t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev()) | |
compute_losses = functools.partial( | |
self.diffusion.training_losses, | |
self.ddp_model, | |
micro, | |
t, | |
model_kwargs=model_kwargs, | |
analog_bit=self.analog_bit, | |
) | |
if last_batch or not self.use_ddp: | |
losses = compute_losses() | |
else: | |
with self.ddp_model.no_sync(): | |
losses = compute_losses() | |
if isinstance(self.schedule_sampler, LossAwareSampler): | |
self.schedule_sampler.update_with_local_losses( | |
t, losses["loss"].detach() | |
) | |
loss = (losses["loss"] * weights).mean() | |
log_loss_dict( | |
self.diffusion, t, {k: v * weights for k, v in losses.items()} | |
) | |
self.mp_trainer.backward(loss) | |
def _update_ema(self): | |
for rate, params in zip(self.ema_rate, self.ema_params): | |
update_ema(params, self.mp_trainer.master_params, rate=rate) | |
def _anneal_lr(self): | |
if not self.lr_anneal_steps: | |
return | |
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps | |
lr = self.lr * (1 - frac_done) | |
for param_group in self.opt.param_groups: | |
param_group["lr"] = lr | |
def log_step(self): | |
logger.logkv("step", self.step + self.resume_step) | |
logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch) | |
def save(self): | |
def save_checkpoint(rate, params): | |
state_dict = self.mp_trainer.master_params_to_state_dict(params) | |
if dist.get_rank() == 0: | |
logger.log(f"saving model {rate}...") | |
if not rate: | |
filename = f"model{(self.step + self.resume_step):06d}.pt" | |
else: | |
filename = f"ema_{rate}_{(self.step + self.resume_step):06d}.pt" | |
filename = self.model_name + "_" + filename | |
with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f: | |
th.save(state_dict, f) | |
save_checkpoint(0, self.mp_trainer.master_params) | |
for rate, params in zip(self.ema_rate, self.ema_params): | |
save_checkpoint(rate, params) | |
if dist.get_rank() == 0: | |
with bf.BlobFile( | |
bf.join(get_blob_logdir(), f"opt{(self.step + self.resume_step):06d}.pt"), | |
"wb", | |
) as f: | |
th.save(self.opt.state_dict(), f) | |
dist.barrier() | |
def parse_resume_step_from_filename(filename): | |
""" | |
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the | |
checkpoint's number of steps. | |
""" | |
split = filename.split("model") | |
if len(split) < 2: | |
return 0 | |
split1 = split[-1].split(".")[0] | |
try: | |
return int(split1) | |
except ValueError: | |
return 0 | |
def get_blob_logdir(): | |
# You can change this to be a separate path to save checkpoints to | |
# a blobstore or some external drive. | |
return logger.get_dir() | |
def find_resume_checkpoint(): | |
# On your infrastructure, you may want to override this to automatically | |
# discover the latest checkpoint on your blob storage, etc. | |
return None | |
def find_ema_checkpoint(main_checkpoint, step, rate): | |
if main_checkpoint is None: | |
return None | |
filename = f"ema_{rate}_{(step):06d}.pt" | |
path = bf.join(bf.dirname(main_checkpoint), filename) | |
if bf.exists(path): | |
return path | |
return None | |
def log_loss_dict(diffusion, ts, losses): | |
for key, values in losses.items(): | |
logger.logkv_mean(key, values.mean().item()) | |
# Log the quantiles (four quartiles, in particular). | |
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()): | |
quartile = int(4 * sub_t / diffusion.num_timesteps) | |
logger.logkv_mean(f"{key}_q{quartile}", sub_loss) | |