File size: 14,360 Bytes
1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a a5cd505 1306f0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import os
import logging
import torch
import torch.nn.functional as F
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List
import uvicorn
from datetime import datetime
from transformers import AutoTokenizer, AutoModel
import requests
import re
import tempfile
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# System information - with your current values
DEPLOYMENT_DATE = "2025-06-22 22:15:13"
DEPLOYED_BY = "FASTESTAI"
# Get device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# HuggingFace model repository path just for weights file
REPO_ID = "FastestAI/Redundant_Model"
MODEL_WEIGHTS_URL = f"https://huggingface.co/{REPO_ID}/resolve/main/pytorch_model.bin"
# Initialize FastAPI app
app = FastAPI(
title="Test Similarity Analyzer API",
description="API for analyzing similarity between test cases. Deployed by " + DEPLOYED_BY,
version="1.0.0",
docs_url="/",
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Define label to class mapping
label_to_class = {0: "Duplicate", 1: "Redundant", 2: "Distinct"}
# Define input models for API
class SourceCode(BaseModel):
class_name: str
code: str
class TestCase(BaseModel):
id: str
test_fixture: str
name: str
code: str
target_class: str
target_method: List[str]
class SimilarityInput(BaseModel):
pair_id: str
source_code: SourceCode
test_case_1: TestCase
test_case_2: TestCase
# Define the model class
class CodeSimilarityClassifier(torch.nn.Module):
def __init__(self, model_name="microsoft/codebert-base", num_labels=3):
super().__init__()
self.encoder = AutoModel.from_pretrained(model_name)
self.dropout = torch.nn.Dropout(0.1)
# Create a more powerful classification head
hidden_size = self.encoder.config.hidden_size
self.classifier = torch.nn.Sequential(
torch.nn.Linear(hidden_size, hidden_size),
torch.nn.LayerNorm(hidden_size),
torch.nn.GELU(),
torch.nn.Dropout(0.1),
torch.nn.Linear(hidden_size, 512),
torch.nn.LayerNorm(512),
torch.nn.GELU(),
torch.nn.Dropout(0.1),
torch.nn.Linear(512, num_labels)
)
def forward(self, input_ids, attention_mask):
outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=True
)
pooled_output = outputs.pooler_output
logits = self.classifier(pooled_output)
return logits
def extract_features(source_code, test_code_1, test_code_2):
"""Extract specific features to help the model identify similarities"""
# Extract test fixtures
fixture1 = re.search(r'TEST(?:_F)?\s*\(\s*(\w+)', test_code_1)
fixture1 = fixture1.group(1) if fixture1 else ""
fixture2 = re.search(r'TEST(?:_F)?\s*\(\s*(\w+)', test_code_2)
fixture2 = fixture2.group(1) if fixture2 else ""
# Extract test names
name1 = re.search(r'TEST(?:_F)?\s*\(\s*\w+\s*,\s*(\w+)', test_code_1)
name1 = name1.group(1) if name1 else ""
name2 = re.search(r'TEST(?:_F)?\s*\(\s*\w+\s*,\s*(\w+)', test_code_2)
name2 = name2.group(1) if name2 else ""
# Extract assertions
assertions1 = re.findall(r'(EXPECT_|ASSERT_)(\w+)', test_code_1)
assertions2 = re.findall(r'(EXPECT_|ASSERT_)(\w+)', test_code_2)
# Extract function/method calls
calls1 = re.findall(r'(\w+)\s*\(', test_code_1)
calls2 = re.findall(r'(\w+)\s*\(', test_code_2)
# Create explicit feature section
same_fixture = "SAME_FIXTURE" if fixture1 == fixture2 else "DIFFERENT_FIXTURE"
common_assertions = set([a[0] + a[1] for a in assertions1]).intersection(set([a[0] + a[1] for a in assertions2]))
common_calls = set(calls1).intersection(set(calls2))
# Calculate assertion ratio with safety check for zero
assertion_ratio = 0
if assertions1 and assertions2:
total_assertions = len(assertions1) + len(assertions2)
if total_assertions > 0:
assertion_ratio = len(common_assertions) / total_assertions
features = (
f"METADATA: {same_fixture} | "
f"FIXTURE1: {fixture1} | FIXTURE2: {fixture2} | "
f"NAME1: {name1} | NAME2: {name2} | "
f"COMMON_ASSERTIONS: {len(common_assertions)} | "
f"COMMON_CALLS: {len(common_calls)} | "
f"ASSERTION_RATIO: {assertion_ratio}"
)
return features
# Global variables for model and tokenizer
tokenizer = None
model = None
def download_model_weights(url, save_path):
"""Download model weights from URL to a local file"""
try:
logger.info(f"Downloading model weights from {url}...")
response = requests.get(url, stream=True)
if response.status_code != 200:
logger.error(f"Failed to download: HTTP {response.status_code}")
return False
with open(save_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
logger.info(f"Successfully downloaded model weights to {save_path}")
return True
except Exception as e:
logger.error(f"Error downloading model weights: {e}")
return False
# Load model and tokenizer on startup
@app.on_event("startup")
async def startup_event():
global tokenizer, model
try:
logger.info("=== Starting model loading process ===")
# Step 1: Load the tokenizer from the base model
logger.info(f"Loading tokenizer from microsoft/codebert-base...")
try:
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
logger.info("β
Base tokenizer loaded successfully")
except Exception as e:
logger.error(f"β Failed to load tokenizer: {str(e)}")
raise
# Step 2: Create model with base architecture
logger.info("Creating model architecture...")
try:
# Initialize with base CodeBERT
model = CodeSimilarityClassifier(model_name="microsoft/codebert-base")
logger.info("β
Model architecture created successfully")
except Exception as e:
logger.error(f"β Failed to create model architecture: {str(e)}")
raise
# Step 3: Download and load weights
model_path = "pytorch_model.bin"
# First check if the file already exists
if not os.path.exists(model_path):
# Try downloading
if not download_model_weights(MODEL_WEIGHTS_URL, model_path):
logger.error("β Failed to download model weights")
raise RuntimeError("Failed to download model weights")
# Try to load the model weights
try:
# Check if the weights are a state dict or the whole model
logger.info(f"Loading weights from {model_path}...")
checkpoint = torch.load(model_path, map_location=device)
if isinstance(checkpoint, dict):
# If it's a state dict directly
if "state_dict" in checkpoint:
logger.info("Loading from checkpoint['state_dict']")
model.load_state_dict(checkpoint["state_dict"])
elif "model_state_dict" in checkpoint:
logger.info("Loading from checkpoint['model_state_dict']")
model.load_state_dict(checkpoint["model_state_dict"])
else:
logger.info("Loading from checkpoint directly")
model.load_state_dict(checkpoint)
else:
logger.error("β Unsupported model format")
raise RuntimeError("Unsupported model format")
logger.info("β
Model weights loaded successfully")
except Exception as e:
logger.error(f"β Error loading model weights: {str(e)}")
raise
# Move model to device and set to evaluation mode
model.to(device)
model.eval()
logger.info(f"β
Model moved to {device} and set to evaluation mode")
logger.info("=== Model loading process complete ===")
except Exception as e:
logger.error(f"β CRITICAL ERROR in startup: {str(e)}")
import traceback
logger.error(traceback.format_exc())
model = None
tokenizer = None
@app.get("/health")
async def health_check():
"""Health check endpoint that also returns deployment information"""
model_status = model is not None
tokenizer_status = tokenizer is not None
status = "ok" if (model_status and tokenizer_status) else "error"
return {
"status": status,
"model_loaded": model_status,
"tokenizer_loaded": tokenizer_status,
"model": REPO_ID,
"device": str(device),
"deployment_date": DEPLOYMENT_DATE,
"deployed_by": DEPLOYED_BY,
"current_time": datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
}
@app.post("/predict")
async def predict(data: SimilarityInput):
"""
Predict similarity class between two test cases for a given source class.
"""
if model is None or tokenizer is None:
raise HTTPException(status_code=500, detail="Model not loaded correctly")
try:
# Apply heuristics for method and class differences
class_1 = data.test_case_1.target_class
class_2 = data.test_case_2.target_class
method_1 = data.test_case_1.target_method
method_2 = data.test_case_2.target_method
# Check if we can determine similarity without using the model
if class_1 and class_2 and class_1 != class_2:
logger.info(f"Heuristic detection: Different target classes - Distinct")
model_prediction = 2 # Distinct
probs = [0.0, 0.0, 1.0] # 100% confidence in Distinct
elif method_1 and method_2 and not set(method_1).intersection(set(method_2)):
logger.info(f"Heuristic detection: Different target methods - Distinct")
model_prediction = 2 # Distinct
probs = [0.0, 0.0, 1.0] # 100% confidence in Distinct
else:
# No clear heuristic match, use the model
# Extract features to help with classification
features = extract_features(data.source_code.code, data.test_case_1.code, data.test_case_2.code)
# Format the input text with clear section markers as done during training
formatted_text = (
f"{features}\n\n"
f"SOURCE CODE:\n{data.source_code.code.strip()}\n\n"
f"TEST CASE 1:\n{data.test_case_1.code.strip()}\n\n"
f"TEST CASE 2:\n{data.test_case_2.code.strip()}"
)
# Tokenize input
inputs = tokenizer(
formatted_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=512
).to(device)
# Model inference
with torch.no_grad():
logits = model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"]
)
# Process results
probs = F.softmax(logits, dim=-1)[0].cpu().tolist()
model_prediction = torch.argmax(logits, dim=-1).item()
logger.info(f"Model prediction: {label_to_class[model_prediction]}")
# Map prediction to class name
classification = label_to_class.get(model_prediction, "Unknown")
# For API compatibility, map the model outputs (0,1,2) to API scores (1,2,3)
api_score = model_prediction + 1
return {
"pair_id": data.pair_id,
"test_case_1_name": data.test_case_1.name,
"test_case_2_name": data.test_case_2.name,
"similarity": {
"score": api_score,
"classification": classification,
},
"probabilities": probs
}
except Exception as e:
import traceback
error_trace = traceback.format_exc()
logger.error(f"Prediction error: {str(e)}")
logger.error(error_trace)
raise HTTPException(status_code=500, detail=f"Prediction error: {str(e)}")
# Root and example endpoints
@app.get("/")
async def root():
return {
"message": "Test Similarity Analyzer API",
"documentation": "/docs",
"deployment_date": DEPLOYMENT_DATE,
"deployed_by": DEPLOYED_BY
}
@app.get("/example", response_model=SimilarityInput)
async def get_example():
"""Get an example input to test the API"""
return SimilarityInput(
pair_id="example-1",
source_code=SourceCode(
class_name="Calculator",
code="class Calculator {\n public int add(int a, int b) {\n return a + b;\n }\n}"
),
test_case_1=TestCase(
id="test-1",
test_fixture="CalculatorTest",
name="testAddsTwoPositiveNumbers",
code="TEST(CalculatorTest, AddsTwoPositiveNumbers) {\n Calculator calc;\n EXPECT_EQ(5, calc.add(2, 3));\n}",
target_class="Calculator",
target_method=["add"]
),
test_case_2=TestCase(
id="test-2",
test_fixture="CalculatorTest",
name="testAddsTwoPositiveIntegers",
code="TEST(CalculatorTest, AddsTwoPositiveIntegers) {\n Calculator calc;\n EXPECT_EQ(5, calc.add(2, 3));\n}",
target_class="Calculator",
target_method=["add"]
)
)
if __name__ == "__main__":
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True) |