|
|
|
|
|
import os
|
|
from langchain_community.document_loaders import PyPDFLoader
|
|
from langchain_experimental.text_splitter import SemanticChunker
|
|
from langchain_community.vectorstores import FAISS
|
|
|
|
def load_or_build_vectorstore(local_file: str, index_folder: str, embeddings):
|
|
"""
|
|
Loads a local FAISS index if it exists; otherwise,
|
|
builds a new index from the specified PDF file.
|
|
"""
|
|
if os.path.exists(index_folder):
|
|
print("Loading existing FAISS index from disk...")
|
|
vectorstore = FAISS.load_local(index_folder, embeddings, allow_dangerous_deserialization=True)
|
|
else:
|
|
print("Building a new FAISS index...")
|
|
loader = PyPDFLoader(local_file)
|
|
documents = loader.load()
|
|
|
|
text_splitter = SemanticChunker(
|
|
embeddings=embeddings,
|
|
breakpoint_threshold_type='percentile',
|
|
breakpoint_threshold_amount=90
|
|
)
|
|
chunked_docs = text_splitter.split_documents(documents)
|
|
print(f"Document split into {len(chunked_docs)} chunks.")
|
|
|
|
vectorstore = FAISS.from_documents(chunked_docs, embeddings)
|
|
vectorstore.save_local(index_folder)
|
|
|
|
return vectorstore
|
|
|