Upload 8 files
Browse files- .gitattributes +2 -0
- PoliciesEn001.pdf +3 -0
- chain_setup.py +26 -0
- embedding.py +13 -0
- faiss_index/index.faiss +3 -0
- faiss_index/index.pkl +3 -0
- requirements.txt +13 -0
- runtime.txt +1 -0
- vectorstore.py +32 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
faiss_index/index.faiss filter=lfs diff=lfs merge=lfs -text
|
37 |
+
PoliciesEn001.pdf filter=lfs diff=lfs merge=lfs -text
|
PoliciesEn001.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0593a94578ac36a2bbcee355bbd81b1514c730d13a251d93b6dd77e4171bc28c
|
3 |
+
size 2497751
|
chain_setup.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# chain_setup.py
|
2 |
+
|
3 |
+
from langchain.chains import ConversationalRetrievalChain
|
4 |
+
from langchain_community.chat_models import ChatOllama
|
5 |
+
from langchain.memory import ConversationBufferMemory
|
6 |
+
|
7 |
+
def build_conversational_chain(vectorstore):
|
8 |
+
"""
|
9 |
+
Creates a ConversationalRetrievalChain with a ChatOllama LLM and
|
10 |
+
a ConversationBufferMemory for multi-turn Q&A.
|
11 |
+
"""
|
12 |
+
llm = ChatOllama(model="qwen2.5:7b")
|
13 |
+
|
14 |
+
memory = ConversationBufferMemory(
|
15 |
+
memory_key="chat_history",
|
16 |
+
return_messages=True
|
17 |
+
)
|
18 |
+
|
19 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
20 |
+
llm=llm,
|
21 |
+
retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}),
|
22 |
+
memory=memory,
|
23 |
+
verbose=True # optional debug logs
|
24 |
+
)
|
25 |
+
|
26 |
+
return qa_chain
|
embedding.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# embedding.py
|
2 |
+
|
3 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
4 |
+
|
5 |
+
def load_embeddings():
|
6 |
+
"""
|
7 |
+
Returns a HuggingFaceEmbeddings instance.
|
8 |
+
"""
|
9 |
+
embeddings = HuggingFaceEmbeddings(
|
10 |
+
model_name="nomic-ai/nomic-embed-text-v1.5",
|
11 |
+
model_kwargs={"trust_remote_code": True}
|
12 |
+
)
|
13 |
+
return embeddings
|
faiss_index/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2040bb0dc2677cc22d40f55e1c3b92bc67a4a69c6cfb52c61dcd85e7092c47ed
|
3 |
+
size 1044525
|
faiss_index/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb8b887e2cc00ef0dd40b895cd502b5028abc1e4198d86f8f354a6b8d13e8706
|
3 |
+
size 245411
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.25.0
|
2 |
+
langchain
|
3 |
+
langchain_community
|
4 |
+
torch
|
5 |
+
transformers
|
6 |
+
sentence-transformers
|
7 |
+
accelerate
|
8 |
+
pypdf
|
9 |
+
ollama
|
10 |
+
langchain_experimental
|
11 |
+
faiss-cpu
|
12 |
+
langchain_huggingface
|
13 |
+
einops
|
runtime.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python-3.12
|
vectorstore.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# vectorstore.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
|
8 |
+
def load_or_build_vectorstore(local_file: str, index_folder: str, embeddings):
|
9 |
+
"""
|
10 |
+
Loads a local FAISS index if it exists; otherwise,
|
11 |
+
builds a new index from the specified PDF file.
|
12 |
+
"""
|
13 |
+
if os.path.exists(index_folder):
|
14 |
+
print("Loading existing FAISS index from disk...")
|
15 |
+
vectorstore = FAISS.load_local(index_folder, embeddings, allow_dangerous_deserialization=True)
|
16 |
+
else:
|
17 |
+
print("Building a new FAISS index...")
|
18 |
+
loader = PyPDFLoader(local_file)
|
19 |
+
documents = loader.load()
|
20 |
+
|
21 |
+
text_splitter = SemanticChunker(
|
22 |
+
embeddings=embeddings,
|
23 |
+
breakpoint_threshold_type='percentile',
|
24 |
+
breakpoint_threshold_amount=90
|
25 |
+
)
|
26 |
+
chunked_docs = text_splitter.split_documents(documents)
|
27 |
+
print(f"Document split into {len(chunked_docs)} chunks.")
|
28 |
+
|
29 |
+
vectorstore = FAISS.from_documents(chunked_docs, embeddings)
|
30 |
+
vectorstore.save_local(index_folder)
|
31 |
+
|
32 |
+
return vectorstore
|