Fawaz0ibra commited on
Commit
c002818
·
verified ·
1 Parent(s): 24f1750

Upload 8 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ faiss_index/index.faiss filter=lfs diff=lfs merge=lfs -text
37
+ PoliciesEn001.pdf filter=lfs diff=lfs merge=lfs -text
PoliciesEn001.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0593a94578ac36a2bbcee355bbd81b1514c730d13a251d93b6dd77e4171bc28c
3
+ size 2497751
chain_setup.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # chain_setup.py
2
+
3
+ from langchain.chains import ConversationalRetrievalChain
4
+ from langchain_community.chat_models import ChatOllama
5
+ from langchain.memory import ConversationBufferMemory
6
+
7
+ def build_conversational_chain(vectorstore):
8
+ """
9
+ Creates a ConversationalRetrievalChain with a ChatOllama LLM and
10
+ a ConversationBufferMemory for multi-turn Q&A.
11
+ """
12
+ llm = ChatOllama(model="qwen2.5:7b")
13
+
14
+ memory = ConversationBufferMemory(
15
+ memory_key="chat_history",
16
+ return_messages=True
17
+ )
18
+
19
+ qa_chain = ConversationalRetrievalChain.from_llm(
20
+ llm=llm,
21
+ retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}),
22
+ memory=memory,
23
+ verbose=True # optional debug logs
24
+ )
25
+
26
+ return qa_chain
embedding.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # embedding.py
2
+
3
+ from langchain_huggingface import HuggingFaceEmbeddings
4
+
5
+ def load_embeddings():
6
+ """
7
+ Returns a HuggingFaceEmbeddings instance.
8
+ """
9
+ embeddings = HuggingFaceEmbeddings(
10
+ model_name="nomic-ai/nomic-embed-text-v1.5",
11
+ model_kwargs={"trust_remote_code": True}
12
+ )
13
+ return embeddings
faiss_index/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2040bb0dc2677cc22d40f55e1c3b92bc67a4a69c6cfb52c61dcd85e7092c47ed
3
+ size 1044525
faiss_index/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb8b887e2cc00ef0dd40b895cd502b5028abc1e4198d86f8f354a6b8d13e8706
3
+ size 245411
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ streamlit==1.25.0
2
+ langchain
3
+ langchain_community
4
+ torch
5
+ transformers
6
+ sentence-transformers
7
+ accelerate
8
+ pypdf
9
+ ollama
10
+ langchain_experimental
11
+ faiss-cpu
12
+ langchain_huggingface
13
+ einops
runtime.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ python-3.12
vectorstore.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # vectorstore.py
2
+
3
+ import os
4
+ from langchain_community.document_loaders import PyPDFLoader
5
+ from langchain_experimental.text_splitter import SemanticChunker
6
+ from langchain_community.vectorstores import FAISS
7
+
8
+ def load_or_build_vectorstore(local_file: str, index_folder: str, embeddings):
9
+ """
10
+ Loads a local FAISS index if it exists; otherwise,
11
+ builds a new index from the specified PDF file.
12
+ """
13
+ if os.path.exists(index_folder):
14
+ print("Loading existing FAISS index from disk...")
15
+ vectorstore = FAISS.load_local(index_folder, embeddings, allow_dangerous_deserialization=True)
16
+ else:
17
+ print("Building a new FAISS index...")
18
+ loader = PyPDFLoader(local_file)
19
+ documents = loader.load()
20
+
21
+ text_splitter = SemanticChunker(
22
+ embeddings=embeddings,
23
+ breakpoint_threshold_type='percentile',
24
+ breakpoint_threshold_amount=90
25
+ )
26
+ chunked_docs = text_splitter.split_documents(documents)
27
+ print(f"Document split into {len(chunked_docs)} chunks.")
28
+
29
+ vectorstore = FAISS.from_documents(chunked_docs, embeddings)
30
+ vectorstore.save_local(index_folder)
31
+
32
+ return vectorstore