File size: 16,184 Bytes
510c455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
958d7f4
b91a4cd
510c455
932053d
510c455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a7754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510c455
04a7754
 
 
 
 
 
 
510c455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a7754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510c455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a7754
510c455
 
04a7754
510c455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a7754
510c455
 
 
 
 
 
 
 
 
04a7754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510c455
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import gradio as gr
import os
from pathlib import Path
import re
from unidecode import unidecode
import chromadb
from langchain_community.vectorstores import FAISS, ScaNN, Milvus
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
import torch
import secrets
api_token = os.getenv("hf")

list_llm = ["Fecalisboa/Lu_model", "mistralai/Mistral-7B-Instruct-v0.3","unsloth/mistral-7b-v0.3" ]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Create vector database
def create_db(splits, collection_name, db_type):
    embedding = HuggingFaceEmbeddings()
    
    if db_type == "ChromaDB":
        new_client = chromadb.EphemeralClient()
        vectordb = Chroma.from_documents(
            documents=splits,
            embedding=embedding,
            client=new_client,
            collection_name=collection_name,
        )
    elif db_type == "FAISS":
        vectordb = FAISS.from_documents(
            documents=splits,
            embedding=embedding
        )
    elif db_type == "ScaNN":
        vectordb = ScaNN.from_documents(
            documents=splits,
            embedding=embedding
        )
    elif db_type == "Milvus":
        vectordb = Milvus.from_documents(
            documents=splits,
            embedding=embedding,
            collection_name=collection_name,
        )
    else:
        raise ValueError(f"Unsupported vector database type: {db_type}")
    
    return vectordb

# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
    progress(0.1, desc="Initializing HF tokenizer...")
    
    progress(0.5, desc="Initializing HF Hub...")

    llm = HuggingFaceEndpoint(
        repo_id=llm_model,
        huggingfacehub_api_token=api_token,
        temperature=temperature,
        max_new_tokens=max_tokens,
        top_k=top_k,
    )

    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    retriever = vector_db.as_retriever()
    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    qa_chain({"question": initial_prompt})  # Initialize with the initial prompt
    progress(0.9, desc="Done!")
    return qa_chain

# Generate collection name for vector database
def create_collection_name(filepath):
    collection_name = Path(filepath).stem
    collection_name = collection_name.replace(" ", "-")
    collection_name = unidecode(collection_name)
    collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
    collection_name = collection_name[:50]
    if len(collection_name) < 3:
        collection_name = collection_name + 'xyz'
    if not collection_name[0].isalnum():
        collection_name = 'A' + collection_name[1:]
    if not collection_name[-1].isalnum():
        collection_name = collection_name[:-1] + 'Z'
    print('Filepath: ', filepath)
    print('Collection name: ', collection_name)
    return collection_name

# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, db_type, progress=gr.Progress()):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    progress(0.1, desc="Creating collection name...")
    collection_name = create_collection_name(list_file_path[0])
    progress(0.25, desc="Loading document...")
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    progress(0.5, desc="Generating vector database...")
    vector_db = create_db(doc_splits, collection_name, db_type)
    progress(0.9, desc="Done!")
    return vector_db, collection_name, "Complete!"

def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
    llm_name = list_llm[llm_option]
    print("llm_name: ", llm_name)
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, initial_prompt, progress)
    return qa_chain, "Complete!"

def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if "Helpful Answer:" in response_answer:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

def initialize_llm_no_doc(llm_model, temperature, max_tokens, top_k, initial_prompt, progress=gr.Progress()):
    progress(0.1, desc="Initializing HF tokenizer...")
    
    progress(0.5, desc="Initializing HF Hub...")

    llm = HuggingFaceEndpoint(
        repo_id=llm_model,
        huggingfacehub_api_token=api_token,
        temperature=temperature,
        max_new_tokens=max_tokens,
        top_k=top_k,
    )

    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    conversation_chain = ConversationChain(llm=llm, memory=memory, verbose=False)
    conversation_chain({"question": initial_prompt})
    progress(0.9, desc="Done!")
    return conversation_chain

def conversation_no_doc(llm, message, history):
    formatted_chat_history = format_chat_history(message, history)
    response = llm({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    new_history = history + [(message, response_answer)]
    return llm, gr.update(value=""), new_history

def upload_file(file_obj):
    list_file_path = []
    for file in file_obj:
        list_file_path.append(file.name)
    return list_file_path

def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        initial_prompt = gr.State("")
        llm_no_doc = gr.State()

        gr.Markdown(
        """<center><h2>lucIAna</center></h2>
        <h3>Olá, sou a 2. versão</h3>""")
        gr.Markdown(
        """<b>Note:</b> Esta é a lucIAna, primeira Versão da IA para seus PDF documentos. 
        Este chatbot leva em consideração perguntas anteriores ao gerar respostas (por meio de memória conversacional) e inclui referências a documentos para fins de clareza.
        """)

        with gr.Tab("Step 1 - Upload PDF"):
            with gr.Row():
                document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
        
        with gr.Tab("Step 2 - Process document"):
            with gr.Row():
                db_type_radio = gr.Radio(["ChromaDB", "FAISS", "ScaNN", "Milvus"], label="Vector database type", value="ChromaDB", type="value", info="Choose your vector database")
            with gr.Accordion("Advanced options - Document text splitter", open=False):
                with gr.Row():
                    slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
                with gr.Row():
                    slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
            with gr.Row():
                db_progress = gr.Textbox(label="Vector database initialization", value="None")
            with gr.Row():
                db_btn = gr.Button("Generate vector database")
        
        with gr.Tab("Step 3 - Set Initial Prompt"):
            with gr.Row():
                prompt_input = gr.Textbox(label="Initial Prompt", lines=5, value="Você é um advogado sênior, onde seu papel é analisar e trazer as informações sem inventar, dando a sua melhor opinião sempre trazendo contexto e referência. Aprenda o que é jurisprudência.")
            with gr.Row():
                set_prompt_btn = gr.Button("Set Prompt")

        with gr.Tab("Step 4 - Initialize QA chain"):
            with gr.Row():
                llm_btn = gr.Radio(list_llm_simple, 
                    label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
            with gr.Accordion("Advanced options - LLM model", open=False):
                with gr.Row():
                    slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
                with gr.Row():
                    slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
                with gr.Row():
                    slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
            with gr.Row():
                llm_progress = gr.Textbox(value="None", label="QA chain initialization")
            with gr.Row():
                qachain_btn = gr.Button("Initialize Question Answering chain")

        with gr.Tab("Step 5 - Chatbot with document"):
            chatbot = gr.Chatbot(height=300)
            with gr.Accordion("Advanced - Document references", open=False):
                with gr.Row():
                    doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                    source1_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                    source2_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                    source3_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
            with gr.Row():
                submit_btn = gr.Button("Submit message")
                clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")

        with gr.Tab("Step 6 - Chatbot without document"):
            chatbot_no_doc = gr.Chatbot(height=300)
            with gr.Row():
                msg_no_doc = gr.Textbox(placeholder="Type message to chat with lucIAna", container=True)
            with gr.Row():
                submit_btn_no_doc = gr.Button("Submit message")
                clear_btn_no_doc = gr.ClearButton([msg_no_doc, chatbot_no_doc], value="Clear conversation")

        # Preprocessing events
        db_btn.click(initialize_database, 
            inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio], 
            outputs=[vector_db, collection_name, db_progress])
        set_prompt_btn.click(lambda prompt: prompt, 
                             inputs=prompt_input, 
                             outputs=initial_prompt)
        qachain_btn.click(initialize_LLM, 
            inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, initial_prompt], 
            outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], 
            inputs=None, 
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)

        # Chatbot events with document
        msg.submit(conversation, 
            inputs=[qa_chain, msg, chatbot], 
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)
        submit_btn.click(conversation, 
            inputs=[qa_chain, msg, chatbot], 
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)
        clear_btn.click(lambda:[None,"",0,"",0,"",0], 
            inputs=None, 
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)

        # Chatbot events without document
        submit_btn_no_doc.click(conversation_no_doc, 
            inputs=[llm_no_doc, msg_no_doc, chatbot_no_doc], 
            outputs=[llm_no_doc, msg_no_doc, chatbot_no_doc], 
            queue=False)
        clear_btn_no_doc.click(lambda:[None,""], 
            inputs=None, 
            outputs=[chatbot_no_doc, msg_no_doc], 
            queue=False)

        # Initialize LLM without document for conversation
        with gr.Tab("Initialize LLM for Chatbot without document"):
            with gr.Row():
                llm_no_doc_btn = gr.Radio(list_llm_simple, 
                    label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model for chatbot without document")
            with gr.Accordion("Advanced options - LLM model", open=False):
                with gr.Row():
                    slider_temperature_no_doc = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
                with gr.Row():
                    slider_maxtokens_no_doc = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
                with gr.Row():
                    slider_topk_no_doc = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
            with gr.Row():
                llm_no_doc_progress = gr.Textbox(value="None", label="LLM initialization for chatbot without document")
            with gr.Row():
                llm_no_doc_init_btn = gr.Button("Initialize LLM for Chatbot without document")
        
        llm_no_doc_init_btn.click(initialize_llm_no_doc, 
            inputs=[llm_no_doc_btn, slider_temperature_no_doc, slider_maxtokens_no_doc, slider_topk_no_doc, initial_prompt], 
            outputs=[llm_no_doc, llm_no_doc_progress])

    demo.queue().launch(debug=True, share=True)

if __name__ == "__main__":
    demo()