Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import Chroma
|
@@ -10,6 +9,7 @@ from langchain_community.llms import HuggingFacePipeline
|
|
10 |
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
13 |
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
@@ -22,28 +22,10 @@ import tqdm
|
|
22 |
import accelerate
|
23 |
import re
|
24 |
|
25 |
-
# LlamaParse import
|
26 |
-
from llama_parse import LlamaParse
|
27 |
-
import asyncio
|
28 |
-
from llama_index.core.async_utils import DEFAULT_NUM_WORKERS, run_jobs
|
29 |
-
from llama_index.core.base.response.schema import PydanticResponse
|
30 |
-
from llama_index.core.bridge.pydantic import BaseModel, Field, ValidationError
|
31 |
-
from llama_index.core.callbacks.base import CallbackManager
|
32 |
-
from llama_index.core.llms.llm import LLM
|
33 |
-
from llama_index.core.node_parser.interface import NodeParser
|
34 |
-
from llama_index.core.schema import BaseNode, Document, IndexNode, TextNode
|
35 |
-
from llama_index.core.utils import get_tqdm_iterable
|
36 |
-
|
37 |
from io import StringIO
|
38 |
from typing import Any, Callable, List, Optional
|
39 |
|
40 |
import pandas as pd
|
41 |
-
from llama_index.core.node_parser.relational.base_element import (
|
42 |
-
# BaseElementNodeParser,
|
43 |
-
Element,
|
44 |
-
)
|
45 |
-
from llama_index.core.schema import BaseNode, TextNode
|
46 |
-
|
47 |
|
48 |
# Obtenha o token da variável de ambiente
|
49 |
api_token = os.getenv("HF_TOKEN")
|
@@ -58,7 +40,7 @@ def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
58 |
pages = []
|
59 |
for loader in loaders:
|
60 |
pages.extend(loader.load())
|
61 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size
|
62 |
doc_splits = text_splitter.split_documents(pages)
|
63 |
return doc_splits
|
64 |
|
@@ -87,164 +69,13 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
87 |
|
88 |
progress(0.5, desc="Initializing HF Hub...")
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
top_k = top_k,
|
97 |
-
)
|
98 |
-
else:
|
99 |
-
llm = HuggingFaceEndpoint(
|
100 |
-
huggingfacehub_api_token = api_token,
|
101 |
-
repo_id=llm_model,
|
102 |
-
temperature = temperature,
|
103 |
-
max_new_tokens = max_tokens,
|
104 |
-
top_k = top_k,
|
105 |
-
)
|
106 |
-
|
107 |
-
progress(0.75, desc="Defining buffer memory...")
|
108 |
-
memory = ConversationBufferMemory(
|
109 |
-
memory_key="chat_history",
|
110 |
-
output_key='answer',
|
111 |
-
return_messages=True
|
112 |
)
|
113 |
-
retriever=vector_db.as_retriever()
|
114 |
-
progress(0.8, desc="Defining retrieval chain...")
|
115 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
116 |
-
llm,
|
117 |
-
retriever=retriever,
|
118 |
-
chain_type="stuff",
|
119 |
-
memory=memory,
|
120 |
-
return_source_documents=True,
|
121 |
-
verbose=False,
|
122 |
-
)
|
123 |
-
progress(0.9, desc="Done!")
|
124 |
-
return qa_chain
|
125 |
-
|
126 |
-
# Generate collection name for vector database
|
127 |
-
def create_collection_name(filepath):
|
128 |
-
collection_name = Path(filepath).stem
|
129 |
-
collection_name = collection_name.replace(" ","-")
|
130 |
-
collection_name = unidecode(collection_name)
|
131 |
-
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
132 |
-
collection_name = collection_name[:50]
|
133 |
-
if len(collection_name) < 3:
|
134 |
-
collection_name = collection_name + 'xyz'
|
135 |
-
if not collection_name[0].isalnum():
|
136 |
-
collection_name = 'A' + collection_name[1:]
|
137 |
-
if not collection_name[-1].isalnum():
|
138 |
-
collection_name = collection_name[:-1] + 'Z'
|
139 |
-
print('Filepath: ', filepath)
|
140 |
-
print('Collection name: ', collection_name)
|
141 |
-
return collection_name
|
142 |
-
|
143 |
-
# Initialize database
|
144 |
-
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
145 |
-
list_file_path = [x.name for x in list_file_obj if x is not None]
|
146 |
-
progress(0.1, desc="Creating collection name...")
|
147 |
-
collection_name = create_collection_name(list_file_path[0])
|
148 |
-
progress(0.25, desc="Loading document...")
|
149 |
-
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
150 |
-
progress(0.5, desc="Generating vector database...")
|
151 |
-
vector_db = create_db(doc_splits, collection_name)
|
152 |
-
progress(0.9, desc="Done!")
|
153 |
-
return vector_db, collection_name, "Complete!"
|
154 |
-
|
155 |
-
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
156 |
-
llm_name = list_llm[llm_option]
|
157 |
-
print("llm_name: ",llm_name)
|
158 |
-
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
159 |
-
return qa_chain, "Complete!"
|
160 |
-
|
161 |
-
def format_chat_history(message, chat_history):
|
162 |
-
formatted_chat_history = []
|
163 |
-
for user_message, bot_message in chat_history:
|
164 |
-
formatted_chat_history.append(f"User: {user_message}")
|
165 |
-
formatted_chat_history.append(f"Assistant: {bot_message}")
|
166 |
-
return formatted_chat_history
|
167 |
-
|
168 |
-
|
169 |
-
def conversation(qa_chain, message, history):
|
170 |
-
formatted_chat_history = format_chat_history(message, history)
|
171 |
-
|
172 |
-
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
173 |
-
response_answer = response["answer"]
|
174 |
-
if response_answer.find("Helpful Answer:") != -1:
|
175 |
-
response_answer = response_answer.split("Helpful Answer:")[-1]
|
176 |
-
response_sources = response["source_documents"]
|
177 |
-
response_source1 = response_sources[0].page_content.strip()
|
178 |
-
response_source2 = response_sources[1].page_content.strip()
|
179 |
-
response_source3 = response_sources[2].page_content.strip()
|
180 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
181 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
182 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
183 |
-
|
184 |
-
new_history = history + [(message, response_answer)]
|
185 |
-
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
186 |
-
|
187 |
-
def upload_file(file_obj):
|
188 |
-
list_file_path = []
|
189 |
-
for idx, file in enumerate(file_obj):
|
190 |
-
file_path = file_obj.name
|
191 |
-
list_file_path.append(file_path)
|
192 |
-
return list_file_path
|
193 |
-
|
194 |
-
list_llm = ["mistralai/Miceli", "mistralai/Mistral-7B-Instruct-v0.3"]
|
195 |
-
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
196 |
-
|
197 |
-
# Load PDF document and create doc splits
|
198 |
-
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
199 |
-
loaders = [PyPDFLoader(x) for x in list_file_path]
|
200 |
-
pages = []
|
201 |
-
for loader in loaders:
|
202 |
-
pages.extend(loader.load())
|
203 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size = chunk_size, chunk_overlap = chunk_overlap)
|
204 |
-
doc_splits = text_splitter.split_documents(pages)
|
205 |
-
return doc_splits
|
206 |
-
|
207 |
-
# Create vector database
|
208 |
-
def create_db(splits, collection_name):
|
209 |
-
embedding = HuggingFaceEmbeddings()
|
210 |
-
new_client = chromadb.EphemeralClient()
|
211 |
-
vectordb = Chroma.from_documents(
|
212 |
-
documents=splits,
|
213 |
-
embedding=embedding,
|
214 |
-
client=new_client,
|
215 |
-
collection_name=collection_name,
|
216 |
-
)
|
217 |
-
return vectordb
|
218 |
-
|
219 |
-
# Load vector database
|
220 |
-
def load_db():
|
221 |
-
embedding = HuggingFaceEmbeddings()
|
222 |
-
vectordb = Chroma(
|
223 |
-
embedding_function=embedding)
|
224 |
-
return vectordb
|
225 |
-
|
226 |
-
# Initialize langchain LLM chain
|
227 |
-
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
228 |
-
progress(0.1, desc="Initializing HF tokenizer...")
|
229 |
-
|
230 |
-
progress(0.5, desc="Initializing HF Hub...")
|
231 |
-
|
232 |
-
if llm_model == "mistralai/Mistral-7B-Instruct-v0.2":
|
233 |
-
llm = HuggingFaceEndpoint(
|
234 |
-
repo_id=llm_model,
|
235 |
-
huggingfacehub_api_token = api_token,
|
236 |
-
temperature = temperature,
|
237 |
-
max_new_tokens = max_tokens,
|
238 |
-
top_k = top_k,
|
239 |
-
)
|
240 |
-
else:
|
241 |
-
llm = HuggingFaceEndpoint(
|
242 |
-
huggingfacehub_api_token = api_token,
|
243 |
-
repo_id=llm_model,
|
244 |
-
temperature = temperature,
|
245 |
-
max_new_tokens = max_tokens,
|
246 |
-
top_k = top_k,
|
247 |
-
)
|
248 |
|
249 |
progress(0.75, desc="Defining buffer memory...")
|
250 |
memory = ConversationBufferMemory(
|
@@ -252,7 +83,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
252 |
output_key='answer',
|
253 |
return_messages=True
|
254 |
)
|
255 |
-
retriever=vector_db.as_retriever()
|
256 |
progress(0.8, desc="Defining retrieval chain...")
|
257 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
258 |
llm,
|
@@ -294,37 +125,9 @@ def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Pr
|
|
294 |
progress(0.9, desc="Done!")
|
295 |
return vector_db, collection_name, "Complete!"
|
296 |
|
297 |
-
# Initialize LlamaIndex parsing
|
298 |
-
def initialize_llama_index(file_obj):
|
299 |
-
documents = LlamaParse(result_type="markdown", api_key=api_token).load_data(file_obj[0].name)
|
300 |
-
node_parser = MarkdownElementNodeParser(llm=None, num_workers=8)
|
301 |
-
nodes = node_parser.get_nodes_from_documents(documents)
|
302 |
-
base_nodes, objects = node_parser.get_nodes_and_objects(nodes)
|
303 |
-
|
304 |
-
# Usando SimpleVectorStore para criar um índice vetorial
|
305 |
-
vector_store = SimpleVectorStore()
|
306 |
-
for node in base_nodes + objects:
|
307 |
-
vector_store.add(node)
|
308 |
-
|
309 |
-
# Criando um recuperador a partir do índice vetorial
|
310 |
-
index_ret = VectorIndexRetriever(vector_store=vector_store, top_k=15)
|
311 |
-
|
312 |
-
# Configurando o motor de consulta
|
313 |
-
reranker = FlagEmbeddingReranker(
|
314 |
-
top_n=5,
|
315 |
-
model="BAAI/bge-reranker-large"
|
316 |
-
)
|
317 |
-
recursive_query_engine = RetrieverQueryEngine(
|
318 |
-
retriever=index_ret,
|
319 |
-
node_postprocessors=[reranker],
|
320 |
-
verbose=False
|
321 |
-
)
|
322 |
-
|
323 |
-
return recursive_query_engine, "LlamaIndex parsing complete"
|
324 |
-
|
325 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
326 |
llm_name = list_llm[llm_option]
|
327 |
-
print("llm_name: ",llm_name)
|
328 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
329 |
return qa_chain, "Complete!"
|
330 |
|
@@ -364,7 +167,6 @@ def demo():
|
|
364 |
vector_db = gr.State()
|
365 |
qa_chain = gr.State()
|
366 |
collection_name = gr.State()
|
367 |
-
llama_index_engine = gr.State()
|
368 |
|
369 |
gr.Markdown(
|
370 |
"""<center><h2>PDF-based chatbot</center></h2>
|
@@ -407,13 +209,7 @@ def demo():
|
|
407 |
with gr.Row():
|
408 |
qachain_btn = gr.Button("Initialize Question Answering chain")
|
409 |
|
410 |
-
with gr.Tab("Step 4 -
|
411 |
-
with gr.Row():
|
412 |
-
llama_index_btn = gr.Button("Parse with LlamaIndex")
|
413 |
-
with gr.Row():
|
414 |
-
llama_index_progress = gr.Textbox(label="LlamaIndex parsing status", value="None")
|
415 |
-
|
416 |
-
with gr.Tab("Step 5 - Chatbot"):
|
417 |
chatbot = gr.Chatbot(height=300)
|
418 |
with gr.Accordion("Advanced - Document references", open=False):
|
419 |
with gr.Row():
|
@@ -441,9 +237,6 @@ def demo():
|
|
441 |
inputs=None,
|
442 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
443 |
queue=False)
|
444 |
-
llama_index_btn.click(initialize_llama_index,
|
445 |
-
inputs=[document],
|
446 |
-
outputs=[llama_index_engine, llama_index_progress])
|
447 |
|
448 |
# Chatbot events
|
449 |
msg.submit(conversation,
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.vectorstores import Chroma
|
|
|
9 |
from langchain.chains import ConversationChain
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain_community.llms import HuggingFaceEndpoint
|
12 |
+
from huggingface_hub import login
|
13 |
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
|
|
22 |
import accelerate
|
23 |
import re
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
from io import StringIO
|
26 |
from typing import Any, Callable, List, Optional
|
27 |
|
28 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Obtenha o token da variável de ambiente
|
31 |
api_token = os.getenv("HF_TOKEN")
|
|
|
40 |
pages = []
|
41 |
for loader in loaders:
|
42 |
pages.extend(loader.load())
|
43 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
44 |
doc_splits = text_splitter.split_documents(pages)
|
45 |
return doc_splits
|
46 |
|
|
|
69 |
|
70 |
progress(0.5, desc="Initializing HF Hub...")
|
71 |
|
72 |
+
llm = HuggingFaceEndpoint(
|
73 |
+
repo_id=llm_model,
|
74 |
+
huggingfacehub_api_token=api_token,
|
75 |
+
temperature=temperature,
|
76 |
+
max_new_tokens=max_tokens,
|
77 |
+
top_k=top_k,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
progress(0.75, desc="Defining buffer memory...")
|
81 |
memory = ConversationBufferMemory(
|
|
|
83 |
output_key='answer',
|
84 |
return_messages=True
|
85 |
)
|
86 |
+
retriever = vector_db.as_retriever()
|
87 |
progress(0.8, desc="Defining retrieval chain...")
|
88 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
89 |
llm,
|
|
|
125 |
progress(0.9, desc="Done!")
|
126 |
return vector_db, collection_name, "Complete!"
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
129 |
llm_name = list_llm[llm_option]
|
130 |
+
print("llm_name: ", llm_name)
|
131 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
132 |
return qa_chain, "Complete!"
|
133 |
|
|
|
167 |
vector_db = gr.State()
|
168 |
qa_chain = gr.State()
|
169 |
collection_name = gr.State()
|
|
|
170 |
|
171 |
gr.Markdown(
|
172 |
"""<center><h2>PDF-based chatbot</center></h2>
|
|
|
209 |
with gr.Row():
|
210 |
qachain_btn = gr.Button("Initialize Question Answering chain")
|
211 |
|
212 |
+
with gr.Tab("Step 4 - Chatbot"):
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
chatbot = gr.Chatbot(height=300)
|
214 |
with gr.Accordion("Advanced - Document references", open=False):
|
215 |
with gr.Row():
|
|
|
237 |
inputs=None,
|
238 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
239 |
queue=False)
|
|
|
|
|
|
|
240 |
|
241 |
# Chatbot events
|
242 |
msg.submit(conversation,
|