Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import json | |
# Load All Files | |
with open('model_lin_reg.pkl', 'rb') as file_1: | |
model_lin_reg = pickle.load(file_1) | |
with open('model_scaler.pkl', 'rb') as file_2: | |
model_scaler = pickle.load(file_2) | |
with open('model_encoder.pkl','rb') as file_3: | |
model_encoder = pickle.load(file_3) | |
with open('list_num_cols.txt', 'r') as file_4: | |
list_num_cols = json.load(file_4) | |
with open('list_cat_cols.txt', 'r') as file_5: | |
list_cat_cols = json.load(file_5) | |
def run(): | |
with st.form('key=form_fifa_2022') : | |
name = st.text_input('Full Name', value='') | |
age = st.number_input('Age', min_value=16, max_value= 60, value=25, step=1, help= 'Usia Pemain') | |
Weight = st.number_input('Weight', min_value=50, max_value=150, value= 70) | |
Height = st.slider('Height', 150,250,170) | |
price = st.number_input ('price',min_value=0, max_value=10000000000, value= 0) | |
st.markdown('---') | |
attacking_work_rate = st.radio('Attacking Work Rate', ('Low', 'Medium', 'High'), index = 1) | |
defensive_work_rate = st.selectbox('Defensive Work Rate', ('Low', 'Medium', 'High'), index = 1) | |
st.markdown('---') | |
pace = st.number_input('Pace',min_value= 0, max_value= 100, value= 50) | |
shooting = st.number_input('shooting',min_value= 0, max_value= 100, value= 50) | |
passing = st.number_input('Passing',min_value= 0, max_value= 100, value= 50) | |
Dribbling = st.number_input('Dribbling',min_value= 0, max_value= 100, value= 50) | |
defending = st.number_input('defending',min_value= 0, max_value= 100, value= 50) | |
physicality = st.number_input('Physicality',min_value= 0, max_value= 100, value= 50) | |
submitted = st.form_submit_button('Predict') | |
data_inf = { | |
'Name': name, | |
'Age': age, | |
'Height': Height, | |
'Weight': Weight, | |
'Price': price, | |
'AttackingWorkRate': attacking_work_rate, | |
'DefensiveWorkRate': defensive_work_rate, | |
'PaceTotal': pace, | |
'ShootingTotal': shooting, | |
'PassingTotal': passing, | |
'DribblingTotal': Dribbling, | |
'DefendingTotal': defending, | |
'PhysicalityTotal': physicality | |
} | |
data_inf = pd.DataFrame([data_inf]) | |
st.dataframe(data_inf) | |
if submitted: | |
# Split between Numerical Columns and Categorical Columns | |
data_inf_num = data_inf[list_num_cols] | |
data_inf_cat = data_inf[list_cat_cols] | |
# Feature Scaling and Feature Encoding | |
data_inf_num_scaled = model_scaler.transform(data_inf_num) | |
data_inf_cat_encoded = model_encoder.transform(data_inf_cat) | |
data_inf_final = np.concatenate([data_inf_num_scaled, data_inf_cat_encoded], axis=1) | |
# Predict using Linear Regression | |
y_pred_inf = model_lin_reg.predict(data_inf_final) | |
st.write('# Rating : ', str(int(y_pred_inf))) | |
if __name__== '__main__': | |
run() |