Spaces:
Runtime error
Runtime error
File size: 31,611 Bytes
9c2951f efdd708 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
#--- START OF FILE app.py ---
import os
import shutil
import subprocess
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from huggingface_hub import HfApi, whoami, ModelCard, list_models
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from textwrap import dedent
import gradio as gr
import hashlib
import torch.nn.utils.prune as prune
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
import logging
from datetime import datetime
from typing import List, Dict
logging.basicConfig(level=logging.INFO)
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
HF_TOKEN = os.environ.get("HF_TOKEN")
SPACE_ID = "Ffftdtd5dtft/gguf-my-repo" # Replace with your space ID if different
def generate_importance_matrix(model_path, train_data_path):
os.chdir("llama.cpp")
if not os.path.isfile(f"../{model_path}"):
raise Exception(f"Model file not found: {model_path}")
imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
process = subprocess.Popen(imatrix_command, shell=True)
try:
process.wait(timeout=3600)
except subprocess.TimeoutExpired:
process.kill()
os.chdir("..")
def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
if oauth_token.token is None:
raise ValueError("You have to be logged in.")
split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
if split_max_size:
split_cmd += f" --split-max-size {split_max_size}"
split_cmd += f" {model_path} {model_path.split('.')[0]}"
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Error splitting the model: {result.stderr}")
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
if sharded_model_files:
api = HfApi(token=oauth_token.token)
for file in sharded_model_files:
file_path = os.path.join('.', file)
try:
api.upload_file(path_or_fileobj=file_path, path_in_repo=file, repo_id=repo_id)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
else:
raise Exception("No sharded files found.")
def quantize_to_q1_with_min(tensor, min_value=-1):
tensor = torch.sign(tensor)
tensor[tensor < min_value] = min_value
return tensor
def quantize_model_to_q1_with_min(model, min_value=-1):
for name, param in model.named_parameters():
if param.dtype in [torch.float32, torch.float16]:
with torch.no_grad():
param.copy_(quantize_to_q1_with_min(param.data, min_value))
def disable_unnecessary_components(model):
for name, module in model.named_modules():
if isinstance(module, torch.nn.Dropout):
module.p = 0.0
elif isinstance(module, torch.nn.BatchNorm1d):
module.eval()
def ultra_max_compress(model):
model = quantize_model_to_q1_with_min(model, min_value=-0.05)
disable_unnecessary_components(model)
with torch.no_grad():
for name, param in model.named_parameters():
if param.requires_grad:
param.requires_grad = False
param.data = torch.nn.functional.hardtanh(param.data, min_val=-1.0, max_val=1.0)
param.data = param.data.half()
model.eval()
for buffer_name, buffer in model.named_buffers():
if buffer.numel() == 0:
model._buffers.pop(buffer_name)
return model
def optimize_model_resources(model):
torch.set_grad_enabled(False)
model.eval()
for name, param in model.named_parameters():
param.requires_grad = False
if param.dtype == torch.float32:
param.data = param.data.half()
if hasattr(model, 'config'):
if hasattr(model.config, 'max_position_embeddings'):
model.config.max_position_embeddings = min(model.config.max_position_embeddings, 512)
if hasattr(model.config, 'hidden_size'):
model.config.hidden_size = min(model.config.hidden_size, 768)
return model
def aggressive_optimize(model, reduce_layers_factor=0.5):
if hasattr(model.config, 'num_attention_heads'):
model.config.num_attention_heads = int(model.config.num_attention_heads * reduce_layers_factor)
if hasattr(model.config, 'hidden_size'):
model.config.hidden_size = int(model.config.hidden_size * reduce_layers_factor)
return model
def apply_quantization(model, use_int8_inference):
if use_int8_inference:
quantized_model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
return quantized_model
else:
return model
def reduce_layers(model, reduction_factor=0.5):
if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
original_num_layers = len(model.transformer.h)
new_num_layers = int(original_num_layers * reduction_factor)
model.transformer.h = torch.nn.ModuleList(model.transformer.h[:new_num_layers])
return model
def use_smaller_embeddings(model, reduction_factor=0.75):
if hasattr(model, 'config'):
original_embedding_dim = model.config.hidden_size
new_embedding_dim = int(original_embedding_dim * reduction_factor)
model.config.hidden_size = new_embedding_dim
if hasattr(model, 'resize_token_embeddings'):
model.resize_token_embeddings(int(model.config.vocab_size * reduction_factor))
return model
def use_fp16_embeddings(model):
if hasattr(model, 'transformer') and hasattr(model.transformer, 'wte'):
model.transformer.wte = model.transformer.wte.half()
return model
def quantize_embeddings(model):
if hasattr(model, 'transformer') and hasattr(model.transformer, 'wte'):
model.transformer.wte = torch.quantization.quantize_dynamic(
model.transformer.wte, {torch.nn.Embedding}, dtype=torch.qint8
)
return model
def use_bnb_f16(model):
if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
model = model.to(dtype=torch.bfloat16)
return model
def use_group_quantization(model):
for module in model.modules():
if isinstance(module, torch.nn.Linear):
torch.quantization.fuse_modules(module, ['weight'], inplace=True)
torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
return model
def apply_layer_norm_trick(model):
for name, module in model.named_modules():
if isinstance(module, torch.nn.LayerNorm):
module.elementwise_affine = False
return model
def remove_padding(inputs, attention_mask):
last_non_padded = attention_mask.sum(dim=1) - 1
gathered_inputs = torch.gather(inputs, dim=1, index=last_non_padded.unsqueeze(1).unsqueeze(2).expand(-1, -1, inputs.size(2)))
return gathered_inputs
def use_selective_quantization(model):
for module in model.modules():
if isinstance(module, torch.nn.MultiheadAttention):
torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
return model
def use_mixed_precision(model):
if hasattr(model, 'transformer') and hasattr(model.transformer, 'wte'):
model.transformer.wte = model.transformer.wte.half()
return model
def use_pruning_after_training(model, prune_amount=0.1):
from torch import nn as nn
for name, module in model.named_modules():
if isinstance(module, (nn.Linear, nn.Conv2d)):
prune.l1_unstructured(module, name='weight', amount=prune_amount)
prune.remove(module, 'weight')
return model
def use_knowledge_distillation(model, teacher_model, temperature=2.0, alpha=0.5):
teacher_model.eval()
criterion = torch.nn.KLDivLoss(reduction='batchmean')
def distillation_loss(student_logits, teacher_logits):
student_probs = F.log_softmax(student_logits / temperature, dim=-1)
teacher_probs = F.softmax(teacher_logits / temperature, dim=-1)
return criterion(student_probs, teacher_probs) * (temperature**2)
def train_step(inputs, labels):
student_outputs = model(**inputs, labels=labels)
student_logits = student_outputs.logits
with torch.no_grad():
teacher_outputs = teacher_model(**inputs)
teacher_logits = teacher_outputs.logits
loss = alpha * student_outputs.loss + (1 - alpha) * distillation_loss(student_logits, teacher_logits)
return loss
return train_step
def use_weight_sharing(model):
if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
if len(model.transformer.h) > 1:
model.transformer.h[-1].load_state_dict(model.transformer.h[0].state_dict())
return model
def use_low_rank_approximation(model, rank_factor=0.5):
for module in model.modules():
if isinstance(module, torch.nn.Linear):
original_weight = module.weight.data
U, S, V = torch.linalg.svd(original_weight)
rank = int(S.size(0) * rank_factor)
module.weight.data = U[:, :rank] @ torch.diag(S[:rank]) @ V[:rank, :]
return model
def use_hashing_trick(model, num_hashes=1024):
def hash_features(features):
features_bytes = features.cpu().numpy().tobytes()
hash_object = hashlib.sha256(features_bytes)
hash_value = hash_object.hexdigest()
hashed_features = int(hash_value, 16) % num_hashes
return torch.tensor(hashed_features, device=features.device)
original_forward = model.forward
def forward(*args, **kwargs):
inputs = args[0]
hashed_inputs = hash_features(inputs)
return original_forward(hashed_inputs, *args[1:], **kwargs)
def use_quantization_aware_training(model):
model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
torch.quantization.prepare_qat(model, inplace=True)
torch.quantization.convert(model, inplace=True)
return model
def use_gradient_checkpointing(model):
def custom_forward(*inputs):
return checkpoint(model, *inputs)
model.forward = custom_forward
return model
def use_channel_pruning(model, prune_amount=0.1):
from torch import nn as nn
for module in model.modules():
if isinstance(module, nn.Conv2d):
prune.ln_structured(module, name="weight", amount=prune_amount, n=2, dim=0)
prune.remove(module, 'weight')
return model
def use_sparse_tensors(model, sparsity_threshold=0.01):
for name, param in model.named_parameters():
if param.dim() >= 2 and param.is_floating_point():
sparse_param = param.to_sparse()
sparse_param._values()[sparse_param._values().abs() < sparsity_threshold] = 0
param.data = sparse_param.to_dense()
return model
def use_lora(model, r=8, lora_alpha=16, lora_dropout=0.05, target_modules=None):
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=r,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
target_modules=target_modules if target_modules else ["q_proj", "v_proj"], # Example target modules
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
return model
def use_adalora(model, target_r=8, init_r=12, tmask_init=0.01, beta1=0.85, beta2=0.99, loha=False, **kwargs):
from peft import AdaLoraConfig, get_peft_model
config = AdaLoraConfig(
target_r=target_r,
init_r=init_r,
tmask_init=tmask_init,
beta1=beta1,
beta2=beta2,
loha=loha,
task_type="CAUSAL_LM",
**kwargs
)
model = get_peft_model(model, config)
return model
def use_ia3(model, target_modules=None):
from peft import IA3Config, get_peft_model
config = IA3Config(
target_modules=target_modules if target_modules else ["k_proj", "v_proj", "down_proj"], # Example target modules
feedforward_modules=None,
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
return model
def use_prompt_tuning(model, num_virtual_tokens=8, prompt_tuning_init_text="You are a helpful assistant."):
from peft import PromptTuningConfig, get_peft_model, TaskType
config = PromptTuningConfig(
task_type=TaskType.CAUSAL_LM,
num_virtual_tokens=num_virtual_tokens,
prompt_tuning_init_text=prompt_tuning_init_text,
tokenizer_name_or_path=model.config.tokenizer_class if hasattr(model.config, 'tokenizer_class') else None
)
model = get_peft_model(model, config)
return model
def apply_moe_layer_splitting(model, num_experts: int = 4, expert_capacity_factor: float = 2.0, moe_layer_freq: int = 2):
# Assumes a standard transformer block structure
if not hasattr(model, 'transformer') or not hasattr(model.transformer, 'h'):
logging.warning("Model does not have the expected transformer structure for MoE splitting.")
return model
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock, MixtralBLock
for i in range(len(model.transformer.h)):
if (i + 1) % moe_layer_freq == 0:
original_layer = model.transformer.h[i]
# Extract necessary components, handling different layer structures
if isinstance(original_layer, MixtralBLock):
config = original_layer.config
new_moe_block = MixtralSparseMoeBlock(config, num_experts=num_experts, capacity_factor=expert_capacity_factor)
# Copy relevant weights - this might need adjustments based on the model
new_moe_block.load_state_dict(original_layer.mlp.state_dict(), strict=False)
model.transformer.h[i] = new_moe_block
else:
logging.warning(f"Skipping layer {i} for MoE, not a recognized block type.")
return model
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size,
oauth_token: gr.OAuthToken | None, apply_aggressive_optimization, apply_reduce_layers, apply_smaller_embeddings,
apply_weight_sharing, apply_low_rank_approx, use_lora_opt, use_adalora_opt, use_ia3_opt, use_prompt_tuning_opt,
apply_moe_splitting, num_experts_moe, expert_capacity_factor_moe, moe_layer_freq_moe,
is_automated=False):
if oauth_token.token is None and not is_automated:
raise ValueError("You must be logged in to use GGUF-my-repo")
elif oauth_token.token is None and is_automated:
logging.warning("Running in automated mode without user authentication.")
model_name = model_id.split('/')[-1]
fp16 = f"{model_name}.fp16.gguf"
try:
api = HfApi(token=oauth_token.token if oauth_token else None)
dl_pattern = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel", "*.md", "*.json", "*.model"]
pattern = "*.safetensors" if any(file.path.endswith(".safetensors") for file in api.list_repo_tree(repo_id=model_id, recursive=True)) else "*.bin"
dl_pattern += pattern
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, config=config, torch_dtype=torch.float16, trust_remote_code=True)
if apply_aggressive_optimization:
model = aggressive_optimize(model)
if apply_reduce_layers:
model = reduce_layers(model)
if apply_smaller_embeddings:
model = use_smaller_embeddings(model)
if apply_weight_sharing:
model = use_weight_sharing(model)
if apply_low_rank_approx:
model = use_low_rank_approximation(model)
if use_lora_opt:
model = use_lora(model)
if use_adalora_opt:
model = use_adalora(model)
if use_ia3_opt:
model = use_ia3(model)
if use_prompt_tuning_opt:
model = use_prompt_tuning(model)
if apply_moe_splitting:
model = apply_moe_layer_splitting(model, num_experts_moe, expert_capacity_factor_moe, moe_layer_freq_moe)
optimized_model_path = f"{model_name}_optimized"
model.save_pretrained(optimized_model_path)
conversion_script = "convert_hf_to_gguf.py"
fp16_conversion = f"python llama.cpp/{conversion_script} {optimized_model_path} --outtype f16 --outfile {fp16}"
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
if result.returncode != 0:
raise Exception(f"Error converting to fp16: {result.stderr}")
imatrix_path = "llama.cpp/imatrix.dat"
if use_imatrix:
if train_data_file:
train_data_path = train_data_file.name
else:
train_data_path = "groups_merged.txt"
if not os.path.isfile(train_data_path):
raise Exception(f"Training data file not found: {train_data_path}")
generate_importance_matrix(fp16, train_data_path)
username = whoami(oauth_token.token)["name"] if oauth_token and oauth_token.token else "automated-gguf"
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
quantized_gguf_path = quantized_gguf_name
if use_imatrix:
quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
else:
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
if result.returncode != 0:
raise Exception(f"Error quantizing: {result.stderr}")
try:
subprocess.run(["llama.cpp/llama", "-m", quantized_gguf_path, "-p", "Test prompt"], check=True)
except Exception as e:
raise Exception(f"Model verification failed: {e}")
new_repo_id = f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF"
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
try:
card = ModelCard.load(model_id, token=oauth_token.token if oauth_token else None)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("llama-cpp")
card.data.tags.append("gguf-my-repo")
card.data.base_model = model_id
optimization_notes = []
if apply_aggressive_optimization:
optimization_notes.append("Aggressive optimization applied.")
if apply_reduce_layers:
optimization_notes.append("Number of layers reduced.")
if apply_smaller_embeddings:
optimization_notes.append("Embedding size reduced.")
if apply_weight_sharing:
optimization_notes.append("Weight sharing applied.")
if apply_low_rank_approx:
optimization_notes.append(f"Low-rank approximation applied.")
if use_lora_opt:
optimization_notes.append("LoRA applied.")
if use_adalora_opt:
optimization_notes.append("AdaLoRA applied.")
if use_ia3_opt:
optimization_notes.append("IA3 applied.")
if use_prompt_tuning_opt:
optimization_notes.append("Prompt Tuning applied.")
if apply_moe_splitting:
optimization_notes.append(f"Mixture-of-Experts (MoE) layer splitting applied with {num_experts_moe} experts every {moe_layer_freq_moe} layers.")
card.text = dedent(
f"""
# {new_repo_id}
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
{' '.join(optimization_notes)}
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
```
"""
)
card.save(f"README.md")
if split_model:
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
else:
try:
api.upload_file(path_or_fileobj=quantized_gguf_path, path_in_repo=quantized_gguf_name, repo_id=new_repo_id)
except Exception as e:
raise Exception(f"Error uploading quantized model: {e}")
if os.path.isfile(imatrix_path):
try:
api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=new_repo_id)
except Exception as e:
raise Exception(f"Error uploading imatrix.dat: {e}")
api.upload_file(path_or_fileobj=f"README.md", path_in_repo=f"README.md", repo_id=new_repo_id)
log_message = f"Successfully processed and uploaded GGUF model for {model_id} to {new_repo_url}"
logging.info(log_message)
return (f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', "llama.png")
except Exception as e:
error_message = f"Error processing model {model_id}: {e}"
logging.error(error_message)
return (f"Error: {e}", "error.png")
finally:
shutil.rmtree(model_name, ignore_errors=True)
shutil.rmtree(optimized_model_path, ignore_errors=True)
def select_models_for_automation():
# Example logic: Select top N most downloaded models
models = list_models(sort="downloads", direction=-1, limit=5)
return [model.modelId for model in models]
def get_automation_parameters():
# Example logic: Define default parameters or load from a config
return {
"q_method": "Q4_K_M",
"use_imatrix": False,
"imatrix_q_method": "IQ4_NL",
"private_repo": True,
"train_data_file": None,
"split_model": False,
"split_max_tensors": 256,
"split_max_size": None,
"apply_aggressive_optimization": True,
"apply_reduce_layers": True,
"apply_smaller_embeddings": True,
"apply_weight_sharing": False,
"apply_low_rank_approx": False,
"use_lora_opt": False,
"use_adalora_opt": False,
"use_ia3_opt": False,
"use_prompt_tuning_opt": False,
"apply_moe_splitting": False,
"num_experts_moe": 4,
"expert_capacity_factor_moe": 2.0,
"moe_layer_freq_moe": 2,
}
def automate_gguf_creation():
logging.info(f"Starting automated GGUF creation at {datetime.now()}")
api = HfApi(token=HF_TOKEN)
try:
whoami(token=HF_TOKEN) # Check if the token is valid
except Exception as e:
logging.error(f"Error with Hugging Face token: {e}")
return
models_to_process = select_models_for_automation()
automation_params = get_automation_parameters()
for model_id in models_to_process:
logging.info(f"Attempting to process model: {model_id}")
try:
process_model(model_id=model_id, oauth_token=None, is_automated=True, **automation_params)
except Exception as e:
logging.error(f"Failed to process model {model_id} automatically: {e}")
css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;}"""
with gr.Blocks(css=css) as demo:
gr.Markdown("You must be logged in to use GGUF-my-repo for manual processing. Automation runs in the background.")
oauth_token = gr.OAuthButton(min_width=250)
model_id = HuggingfaceHubSearch(label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model")
q_method = gr.Dropdown(["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
label="Quantization Method", info="GGML quantization type", value="Q4_K_M", filterable=False, visible=True)
imatrix_q_method = gr.Dropdown(["IQ1", "IQ1_S", "IQ1_XXS", "IQ2_S", "IQ2_XXS", "IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False)
use_imatrix = gr.Checkbox(value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization.")
train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False)
size_reduction_accordion = gr.Accordion("Additional Size Reduction Techniques", open=False)
with size_reduction_accordion:
apply_aggressive_optimization = gr.Checkbox(value=True, label="Apply Aggressive Optimization", info="Reduces attention heads and hidden size.")
apply_reduce_layers = gr.Checkbox(value=True, label="Reduce Layers", info="Reduces the number of layers in the model.")
apply_smaller_embeddings = gr.Checkbox(value=True, label="Use Smaller Embeddings", info="Reduces the size of the embedding layer.")
apply_weight_sharing = gr.Checkbox(value=False, label="Apply Weight Sharing", info="Shares weights across layers to reduce parameters.")
apply_low_rank_approx = gr.Checkbox(value=False, label="Apply Low-Rank Approximation", info="Approximates weight matrices with lower rank.")
use_lora_opt = gr.Checkbox(value=False, label="Use LoRA", info="Applies Low-Rank Adaptation.")
use_adalora_opt = gr.Checkbox(value=False, label="Use AdaLoRA", info="Applies Adaptive Low-Rank Adaptation.")
use_ia3_opt = gr.Checkbox(value=False, label="Use IA3", info="Applies Infused Adapter by Inhibiting and Amplifying Inner Activations.")
use_prompt_tuning_opt = gr.Checkbox(value=False, label="Use Prompt Tuning", info="Adds trainable virtual tokens to the input embeddings.")
apply_moe_splitting = gr.Checkbox(value=False, label="Apply MoE Layer Splitting", info="Splits layers into a mixture-of-experts (MoE).", visible=False)
with gr.Row(visible=False) as moe_params:
num_experts_moe = gr.Number(value=4, label="Number of Experts", info="Number of experts to use in the MoE layers.", precision=0)
expert_capacity_factor_moe = gr.Number(value=2.0, label="Expert Capacity Factor", info="Capacity factor for each expert in the MoE layer.", precision=1)
moe_layer_freq_moe = gr.Number(value=2, label="MoE Layer Frequency", info="Apply MoE every N layers", precision=0)
private_repo = gr.Checkbox(value=True, label="Private Repo", info="Create a private repo under your username.")
split_model = gr.Checkbox(value=False, label="Split Model", info="Shard the model using gguf-split.")
split_max_tensors = gr.Number(value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False)
split_max_size = gr.Textbox(label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.", visible=False)
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=not use_imatrix), inputs=use_imatrix, outputs=q_method)
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=imatrix_q_method)
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=train_data_file)
split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_tensors)
split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_size)
apply_moe_splitting.change(fn=lambda apply_moe_splitting: gr.update(visible=apply_moe_splitting), inputs=apply_moe_splitting, outputs=moe_params)
iface = gr.Interface(
fn=process_model,
inputs=[
model_id,
q_method,
use_imatrix,
imatrix_q_method,
private_repo,
train_data_file,
split_model,
split_max_tensors,
split_max_size,
oauth_token,
apply_aggressive_optimization,
apply_reduce_layers,
apply_smaller_embeddings,
apply_weight_sharing,
apply_low_rank_approx,
use_lora_opt,
use_adalora_opt,
use_ia3_opt,
use_prompt_tuning_opt,
apply_moe_splitting,
num_experts_moe,
expert_capacity_factor_moe,
moe_layer_freq_moe,
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own GGUF Quants, blazingly fast ⚡!",
description="The space takes an HF repo as an input, applies size reduction techniques, quantizes it and creates a Public or Private repo containing the selected quant under your HF user namespace. It also automates the creation of GGUF quants for popular models in the background.",
api_name=False
)
def restart_space():
HfApi().restart_space(repo_id=SPACE_ID, token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.add_job(automate_gguf_creation, "interval", hours=6) # Run automation every 6 hours
scheduler.start()
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |