File size: 31,611 Bytes
9c2951f
efdd708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
#--- START OF FILE app.py ---

import os
import shutil
import subprocess
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from huggingface_hub import HfApi, whoami, ModelCard, list_models
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from textwrap import dedent
import gradio as gr
import hashlib
import torch.nn.utils.prune as prune
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
import logging
from datetime import datetime
from typing import List, Dict

logging.basicConfig(level=logging.INFO)

os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
HF_TOKEN = os.environ.get("HF_TOKEN")
SPACE_ID = "Ffftdtd5dtft/gguf-my-repo" # Replace with your space ID if different

def generate_importance_matrix(model_path, train_data_path):
    os.chdir("llama.cpp")
    if not os.path.isfile(f"../{model_path}"):
        raise Exception(f"Model file not found: {model_path}")
    imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
    process = subprocess.Popen(imatrix_command, shell=True)
    try:
        process.wait(timeout=3600)
    except subprocess.TimeoutExpired:
        process.kill()
    os.chdir("..")

def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
    if oauth_token.token is None:
        raise ValueError("You have to be logged in.")
    split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
    if split_max_size:
        split_cmd += f" --split-max-size {split_max_size}"
    split_cmd += f" {model_path} {model_path.split('.')[0]}"
    result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
    if result.returncode != 0:
        raise Exception(f"Error splitting the model: {result.stderr}")
    sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
    if sharded_model_files:
        api = HfApi(token=oauth_token.token)
        for file in sharded_model_files:
            file_path = os.path.join('.', file)
            try:
                api.upload_file(path_or_fileobj=file_path, path_in_repo=file, repo_id=repo_id)
            except Exception as e:
                raise Exception(f"Error uploading file {file_path}: {e}")
    else:
        raise Exception("No sharded files found.")

def quantize_to_q1_with_min(tensor, min_value=-1):
    tensor = torch.sign(tensor)
    tensor[tensor < min_value] = min_value
    return tensor

def quantize_model_to_q1_with_min(model, min_value=-1):
    for name, param in model.named_parameters():
        if param.dtype in [torch.float32, torch.float16]:
            with torch.no_grad():
                param.copy_(quantize_to_q1_with_min(param.data, min_value))

def disable_unnecessary_components(model):
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Dropout):
            module.p = 0.0
        elif isinstance(module, torch.nn.BatchNorm1d):
            module.eval()

def ultra_max_compress(model):
    model = quantize_model_to_q1_with_min(model, min_value=-0.05)
    disable_unnecessary_components(model)
    with torch.no_grad():
        for name, param in model.named_parameters():
            if param.requires_grad:
                param.requires_grad = False
                param.data = torch.nn.functional.hardtanh(param.data, min_val=-1.0, max_val=1.0)
                param.data = param.data.half()
    model.eval()
    for buffer_name, buffer in model.named_buffers():
        if buffer.numel() == 0:
            model._buffers.pop(buffer_name)
    return model

def optimize_model_resources(model):
    torch.set_grad_enabled(False)
    model.eval()
    for name, param in model.named_parameters():
        param.requires_grad = False
        if param.dtype == torch.float32:
            param.data = param.data.half()
    if hasattr(model, 'config'):
        if hasattr(model.config, 'max_position_embeddings'):
            model.config.max_position_embeddings = min(model.config.max_position_embeddings, 512)
        if hasattr(model.config, 'hidden_size'):
            model.config.hidden_size = min(model.config.hidden_size, 768)
    return model

def aggressive_optimize(model, reduce_layers_factor=0.5):
    if hasattr(model.config, 'num_attention_heads'):
        model.config.num_attention_heads = int(model.config.num_attention_heads * reduce_layers_factor)
    if hasattr(model.config, 'hidden_size'):
        model.config.hidden_size = int(model.config.hidden_size * reduce_layers_factor)
    return model

def apply_quantization(model, use_int8_inference):
    if use_int8_inference:
        quantized_model = torch.quantization.quantize_dynamic(
            model, {torch.nn.Linear}, dtype=torch.qint8
        )
        return quantized_model
    else:
        return model

def reduce_layers(model, reduction_factor=0.5):
    if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
        original_num_layers = len(model.transformer.h)
        new_num_layers = int(original_num_layers * reduction_factor)
        model.transformer.h = torch.nn.ModuleList(model.transformer.h[:new_num_layers])
    return model

def use_smaller_embeddings(model, reduction_factor=0.75):
    if hasattr(model, 'config'):
        original_embedding_dim = model.config.hidden_size
        new_embedding_dim = int(original_embedding_dim * reduction_factor)
        model.config.hidden_size = new_embedding_dim
        if hasattr(model, 'resize_token_embeddings'):
            model.resize_token_embeddings(int(model.config.vocab_size * reduction_factor))
    return model

def use_fp16_embeddings(model):
    if hasattr(model, 'transformer') and hasattr(model.transformer, 'wte'):
        model.transformer.wte = model.transformer.wte.half()
    return model

def quantize_embeddings(model):
    if hasattr(model, 'transformer') and hasattr(model.transformer, 'wte'):
        model.transformer.wte = torch.quantization.quantize_dynamic(
            model.transformer.wte, {torch.nn.Embedding}, dtype=torch.qint8
        )
    return model

def use_bnb_f16(model):
    if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
        model = model.to(dtype=torch.bfloat16)
    return model

def use_group_quantization(model):
    for module in model.modules():
        if isinstance(module, torch.nn.Linear):
            torch.quantization.fuse_modules(module, ['weight'], inplace=True)
            torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
    return model

def apply_layer_norm_trick(model):
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.LayerNorm):
            module.elementwise_affine = False
    return model

def remove_padding(inputs, attention_mask):
    last_non_padded = attention_mask.sum(dim=1) - 1
    gathered_inputs = torch.gather(inputs, dim=1, index=last_non_padded.unsqueeze(1).unsqueeze(2).expand(-1, -1, inputs.size(2)))
    return gathered_inputs

def use_selective_quantization(model):
    for module in model.modules():
        if isinstance(module, torch.nn.MultiheadAttention):
            torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
    return model

def use_mixed_precision(model):
    if hasattr(model, 'transformer') and hasattr(model.transformer, 'wte'):
        model.transformer.wte = model.transformer.wte.half()
    return model

def use_pruning_after_training(model, prune_amount=0.1):
    from torch import nn as nn
    for name, module in model.named_modules():
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            prune.l1_unstructured(module, name='weight', amount=prune_amount)
            prune.remove(module, 'weight')
    return model

def use_knowledge_distillation(model, teacher_model, temperature=2.0, alpha=0.5):
    teacher_model.eval()
    criterion = torch.nn.KLDivLoss(reduction='batchmean')

    def distillation_loss(student_logits, teacher_logits):
        student_probs = F.log_softmax(student_logits / temperature, dim=-1)
        teacher_probs = F.softmax(teacher_logits / temperature, dim=-1)
        return criterion(student_probs, teacher_probs) * (temperature**2)

    def train_step(inputs, labels):
        student_outputs = model(**inputs, labels=labels)
        student_logits = student_outputs.logits
        with torch.no_grad():
            teacher_outputs = teacher_model(**inputs)
            teacher_logits = teacher_outputs.logits
        loss = alpha * student_outputs.loss + (1 - alpha) * distillation_loss(student_logits, teacher_logits)
        return loss

    return train_step

def use_weight_sharing(model):
    if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
        if len(model.transformer.h) > 1:
            model.transformer.h[-1].load_state_dict(model.transformer.h[0].state_dict())
    return model

def use_low_rank_approximation(model, rank_factor=0.5):
    for module in model.modules():
        if isinstance(module, torch.nn.Linear):
            original_weight = module.weight.data
            U, S, V = torch.linalg.svd(original_weight)
            rank = int(S.size(0) * rank_factor)
            module.weight.data = U[:, :rank] @ torch.diag(S[:rank]) @ V[:rank, :]
    return model

def use_hashing_trick(model, num_hashes=1024):
    def hash_features(features):
        features_bytes = features.cpu().numpy().tobytes()
        hash_object = hashlib.sha256(features_bytes)
        hash_value = hash_object.hexdigest()
        hashed_features = int(hash_value, 16) % num_hashes
        return torch.tensor(hashed_features, device=features.device)

    original_forward = model.forward

    def forward(*args, **kwargs):
        inputs = args[0]
        hashed_inputs = hash_features(inputs)
        return original_forward(hashed_inputs, *args[1:], **kwargs)

def use_quantization_aware_training(model):
    model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
    torch.quantization.prepare_qat(model, inplace=True)
    torch.quantization.convert(model, inplace=True)
    return model

def use_gradient_checkpointing(model):
    def custom_forward(*inputs):
        return checkpoint(model, *inputs)
    model.forward = custom_forward
    return model

def use_channel_pruning(model, prune_amount=0.1):
    from torch import nn as nn
    for module in model.modules():
        if isinstance(module, nn.Conv2d):
            prune.ln_structured(module, name="weight", amount=prune_amount, n=2, dim=0)
            prune.remove(module, 'weight')
    return model

def use_sparse_tensors(model, sparsity_threshold=0.01):
    for name, param in model.named_parameters():
        if param.dim() >= 2 and param.is_floating_point():
            sparse_param = param.to_sparse()
            sparse_param._values()[sparse_param._values().abs() < sparsity_threshold] = 0
            param.data = sparse_param.to_dense()
    return model

def use_lora(model, r=8, lora_alpha=16, lora_dropout=0.05, target_modules=None):
    from peft import LoraConfig, get_peft_model
    config = LoraConfig(
        r=r,
        lora_alpha=lora_alpha,
        lora_dropout=lora_dropout,
        target_modules=target_modules if target_modules else ["q_proj", "v_proj"], # Example target modules
        bias="none",
        task_type="CAUSAL_LM"
    )
    model = get_peft_model(model, config)
    return model

def use_adalora(model, target_r=8, init_r=12, tmask_init=0.01, beta1=0.85, beta2=0.99, loha=False, **kwargs):
    from peft import AdaLoraConfig, get_peft_model
    config = AdaLoraConfig(
        target_r=target_r,
        init_r=init_r,
        tmask_init=tmask_init,
        beta1=beta1,
        beta2=beta2,
        loha=loha,
        task_type="CAUSAL_LM",
        **kwargs
    )
    model = get_peft_model(model, config)
    return model

def use_ia3(model, target_modules=None):
    from peft import IA3Config, get_peft_model
    config = IA3Config(
        target_modules=target_modules if target_modules else ["k_proj", "v_proj", "down_proj"], # Example target modules
        feedforward_modules=None,
        task_type="CAUSAL_LM"
    )
    model = get_peft_model(model, config)
    return model

def use_prompt_tuning(model, num_virtual_tokens=8, prompt_tuning_init_text="You are a helpful assistant."):
    from peft import PromptTuningConfig, get_peft_model, TaskType
    config = PromptTuningConfig(
        task_type=TaskType.CAUSAL_LM,
        num_virtual_tokens=num_virtual_tokens,
        prompt_tuning_init_text=prompt_tuning_init_text,
        tokenizer_name_or_path=model.config.tokenizer_class if hasattr(model.config, 'tokenizer_class') else None
    )
    model = get_peft_model(model, config)
    return model

def apply_moe_layer_splitting(model, num_experts: int = 4, expert_capacity_factor: float = 2.0, moe_layer_freq: int = 2):
    # Assumes a standard transformer block structure
    if not hasattr(model, 'transformer') or not hasattr(model.transformer, 'h'):
        logging.warning("Model does not have the expected transformer structure for MoE splitting.")
        return model

    from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock, MixtralBLock

    for i in range(len(model.transformer.h)):
        if (i + 1) % moe_layer_freq == 0:
            original_layer = model.transformer.h[i]
            # Extract necessary components, handling different layer structures
            if isinstance(original_layer, MixtralBLock):
                config = original_layer.config
                new_moe_block = MixtralSparseMoeBlock(config, num_experts=num_experts, capacity_factor=expert_capacity_factor)
                # Copy relevant weights - this might need adjustments based on the model
                new_moe_block.load_state_dict(original_layer.mlp.state_dict(), strict=False)
                model.transformer.h[i] = new_moe_block
            else:
                logging.warning(f"Skipping layer {i} for MoE, not a recognized block type.")
    return model

def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size,
                 oauth_token: gr.OAuthToken | None, apply_aggressive_optimization, apply_reduce_layers, apply_smaller_embeddings,
                 apply_weight_sharing, apply_low_rank_approx, use_lora_opt, use_adalora_opt, use_ia3_opt, use_prompt_tuning_opt,
                 apply_moe_splitting, num_experts_moe, expert_capacity_factor_moe, moe_layer_freq_moe,
                 is_automated=False):
    if oauth_token.token is None and not is_automated:
        raise ValueError("You must be logged in to use GGUF-my-repo")
    elif oauth_token.token is None and is_automated:
        logging.warning("Running in automated mode without user authentication.")

    model_name = model_id.split('/')[-1]
    fp16 = f"{model_name}.fp16.gguf"

    try:
        api = HfApi(token=oauth_token.token if oauth_token else None)
        dl_pattern = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel", "*.md", "*.json", "*.model"]
        pattern = "*.safetensors" if any(file.path.endswith(".safetensors") for file in api.list_repo_tree(repo_id=model_id, recursive=True)) else "*.bin"
        dl_pattern += pattern
        api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)

        config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
        model = AutoModelForCausalLM.from_pretrained(model_id, config=config, torch_dtype=torch.float16, trust_remote_code=True)

        if apply_aggressive_optimization:
            model = aggressive_optimize(model)
        if apply_reduce_layers:
            model = reduce_layers(model)
        if apply_smaller_embeddings:
            model = use_smaller_embeddings(model)
        if apply_weight_sharing:
            model = use_weight_sharing(model)
        if apply_low_rank_approx:
            model = use_low_rank_approximation(model)
        if use_lora_opt:
            model = use_lora(model)
        if use_adalora_opt:
            model = use_adalora(model)
        if use_ia3_opt:
            model = use_ia3(model)
        if use_prompt_tuning_opt:
            model = use_prompt_tuning(model)
        if apply_moe_splitting:
            model = apply_moe_layer_splitting(model, num_experts_moe, expert_capacity_factor_moe, moe_layer_freq_moe)

        optimized_model_path = f"{model_name}_optimized"
        model.save_pretrained(optimized_model_path)

        conversion_script = "convert_hf_to_gguf.py"
        fp16_conversion = f"python llama.cpp/{conversion_script} {optimized_model_path} --outtype f16 --outfile {fp16}"
        result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
        if result.returncode != 0:
            raise Exception(f"Error converting to fp16: {result.stderr}")

        imatrix_path = "llama.cpp/imatrix.dat"
        if use_imatrix:
            if train_data_file:
                train_data_path = train_data_file.name
            else:
                train_data_path = "groups_merged.txt"
            if not os.path.isfile(train_data_path):
                raise Exception(f"Training data file not found: {train_data_path}")
            generate_importance_matrix(fp16, train_data_path)

        username = whoami(oauth_token.token)["name"] if oauth_token and oauth_token.token else "automated-gguf"
        quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
        quantized_gguf_path = quantized_gguf_name

        if use_imatrix:
            quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
        else:
            quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"

        result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
        if result.returncode != 0:
            raise Exception(f"Error quantizing: {result.stderr}")

        try:
            subprocess.run(["llama.cpp/llama", "-m", quantized_gguf_path, "-p", "Test prompt"], check=True)
        except Exception as e:
            raise Exception(f"Model verification failed: {e}")

        new_repo_id = f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF"
        new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)

        try:
            card = ModelCard.load(model_id, token=oauth_token.token if oauth_token else None)
        except:
            card = ModelCard("")

        if card.data.tags is None:
            card.data.tags = []
        card.data.tags.append("llama-cpp")
        card.data.tags.append("gguf-my-repo")
        card.data.base_model = model_id
        optimization_notes = []
        if apply_aggressive_optimization:
            optimization_notes.append("Aggressive optimization applied.")
        if apply_reduce_layers:
            optimization_notes.append("Number of layers reduced.")
        if apply_smaller_embeddings:
            optimization_notes.append("Embedding size reduced.")
        if apply_weight_sharing:
            optimization_notes.append("Weight sharing applied.")
        if apply_low_rank_approx:
            optimization_notes.append(f"Low-rank approximation applied.")
        if use_lora_opt:
            optimization_notes.append("LoRA applied.")
        if use_adalora_opt:
            optimization_notes.append("AdaLoRA applied.")
        if use_ia3_opt:
            optimization_notes.append("IA3 applied.")
        if use_prompt_tuning_opt:
            optimization_notes.append("Prompt Tuning applied.")
        if apply_moe_splitting:
            optimization_notes.append(f"Mixture-of-Experts (MoE) layer splitting applied with {num_experts_moe} experts every {moe_layer_freq_moe} layers.")

        card.text = dedent(
            f"""
            # {new_repo_id}
            This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
            Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.

            {' '.join(optimization_notes)}

            ## Use with llama.cpp
            Install llama.cpp through brew (works on Mac and Linux)

            ```bash
            brew install llama.cpp

            ```
            Invoke the llama.cpp server or the CLI.

            ### CLI:
            ```bash
            llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
            ```

            ### Server:
            ```bash
            llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
            ```

            Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
            Step 1: Clone llama.cpp from GitHub.
            ```
            git clone https://github.com/ggerganov/llama.cpp
            ```
            Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
            ```
            cd llama.cpp && LLAMA_CURL=1 make
            ```
            Step 3: Run inference through the main binary.
            ```
            ./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
            ```
            or
            ```
            ./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
            ```
            """
        )
        card.save(f"README.md")

        if split_model:
            split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
        else:
            try:
                api.upload_file(path_or_fileobj=quantized_gguf_path, path_in_repo=quantized_gguf_name, repo_id=new_repo_id)
            except Exception as e:
                raise Exception(f"Error uploading quantized model: {e}")

        if os.path.isfile(imatrix_path):
            try:
                api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=new_repo_id)
            except Exception as e:
                raise Exception(f"Error uploading imatrix.dat: {e}")

        api.upload_file(path_or_fileobj=f"README.md", path_in_repo=f"README.md", repo_id=new_repo_id)

        log_message = f"Successfully processed and uploaded GGUF model for {model_id} to {new_repo_url}"
        logging.info(log_message)
        return (f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', "llama.png")
    except Exception as e:
        error_message = f"Error processing model {model_id}: {e}"
        logging.error(error_message)
        return (f"Error: {e}", "error.png")
    finally:
        shutil.rmtree(model_name, ignore_errors=True)
        shutil.rmtree(optimized_model_path, ignore_errors=True)

def select_models_for_automation():
    # Example logic: Select top N most downloaded models
    models = list_models(sort="downloads", direction=-1, limit=5)
    return [model.modelId for model in models]

def get_automation_parameters():
    # Example logic: Define default parameters or load from a config
    return {
        "q_method": "Q4_K_M",
        "use_imatrix": False,
        "imatrix_q_method": "IQ4_NL",
        "private_repo": True,
        "train_data_file": None,
        "split_model": False,
        "split_max_tensors": 256,
        "split_max_size": None,
        "apply_aggressive_optimization": True,
        "apply_reduce_layers": True,
        "apply_smaller_embeddings": True,
        "apply_weight_sharing": False,
        "apply_low_rank_approx": False,
        "use_lora_opt": False,
        "use_adalora_opt": False,
        "use_ia3_opt": False,
        "use_prompt_tuning_opt": False,
        "apply_moe_splitting": False,
        "num_experts_moe": 4,
        "expert_capacity_factor_moe": 2.0,
        "moe_layer_freq_moe": 2,
    }

def automate_gguf_creation():
    logging.info(f"Starting automated GGUF creation at {datetime.now()}")
    api = HfApi(token=HF_TOKEN)
    try:
        whoami(token=HF_TOKEN) # Check if the token is valid
    except Exception as e:
        logging.error(f"Error with Hugging Face token: {e}")
        return

    models_to_process = select_models_for_automation()
    automation_params = get_automation_parameters()

    for model_id in models_to_process:
        logging.info(f"Attempting to process model: {model_id}")
        try:
            process_model(model_id=model_id, oauth_token=None, is_automated=True, **automation_params)
        except Exception as e:
            logging.error(f"Failed to process model {model_id} automatically: {e}")

css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;}"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("You must be logged in to use GGUF-my-repo for manual processing. Automation runs in the background.")
    oauth_token = gr.OAuthButton(min_width=250)
    model_id = HuggingfaceHubSearch(label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model")

    q_method = gr.Dropdown(["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
                          label="Quantization Method", info="GGML quantization type", value="Q4_K_M", filterable=False, visible=True)
    imatrix_q_method = gr.Dropdown(["IQ1", "IQ1_S", "IQ1_XXS", "IQ2_S", "IQ2_XXS", "IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
                                  label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False)
    use_imatrix = gr.Checkbox(value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization.")
    train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False)

    size_reduction_accordion = gr.Accordion("Additional Size Reduction Techniques", open=False)
    with size_reduction_accordion:
        apply_aggressive_optimization = gr.Checkbox(value=True, label="Apply Aggressive Optimization", info="Reduces attention heads and hidden size.")
        apply_reduce_layers = gr.Checkbox(value=True, label="Reduce Layers", info="Reduces the number of layers in the model.")
        apply_smaller_embeddings = gr.Checkbox(value=True, label="Use Smaller Embeddings", info="Reduces the size of the embedding layer.")
        apply_weight_sharing = gr.Checkbox(value=False, label="Apply Weight Sharing", info="Shares weights across layers to reduce parameters.")
        apply_low_rank_approx = gr.Checkbox(value=False, label="Apply Low-Rank Approximation", info="Approximates weight matrices with lower rank.")
        use_lora_opt = gr.Checkbox(value=False, label="Use LoRA", info="Applies Low-Rank Adaptation.")
        use_adalora_opt = gr.Checkbox(value=False, label="Use AdaLoRA", info="Applies Adaptive Low-Rank Adaptation.")
        use_ia3_opt = gr.Checkbox(value=False, label="Use IA3", info="Applies Infused Adapter by Inhibiting and Amplifying Inner Activations.")
        use_prompt_tuning_opt = gr.Checkbox(value=False, label="Use Prompt Tuning", info="Adds trainable virtual tokens to the input embeddings.")
        apply_moe_splitting = gr.Checkbox(value=False, label="Apply MoE Layer Splitting", info="Splits layers into a mixture-of-experts (MoE).", visible=False)
        with gr.Row(visible=False) as moe_params:
            num_experts_moe = gr.Number(value=4, label="Number of Experts", info="Number of experts to use in the MoE layers.", precision=0)
            expert_capacity_factor_moe = gr.Number(value=2.0, label="Expert Capacity Factor", info="Capacity factor for each expert in the MoE layer.", precision=1)
            moe_layer_freq_moe = gr.Number(value=2, label="MoE Layer Frequency", info="Apply MoE every N layers", precision=0)

    private_repo = gr.Checkbox(value=True, label="Private Repo", info="Create a private repo under your username.")
    split_model = gr.Checkbox(value=False, label="Split Model", info="Shard the model using gguf-split.")
    split_max_tensors = gr.Number(value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False)
    split_max_size = gr.Textbox(label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.", visible=False)

    use_imatrix.change(fn=lambda use_imatrix:  gr.update(visible=not use_imatrix), inputs=use_imatrix, outputs=q_method)
    use_imatrix.change(fn=lambda use_imatrix:  gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=imatrix_q_method)
    use_imatrix.change(fn=lambda use_imatrix:  gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=train_data_file)
    split_model.change(fn=lambda split_model:  gr.update(visible=split_model), inputs=split_model, outputs=split_max_tensors)
    split_model.change(fn=lambda split_model:  gr.update(visible=split_model), inputs=split_model, outputs=split_max_size)
    apply_moe_splitting.change(fn=lambda apply_moe_splitting: gr.update(visible=apply_moe_splitting), inputs=apply_moe_splitting, outputs=moe_params)


    iface = gr.Interface(
        fn=process_model,
        inputs=[
            model_id,
            q_method,
            use_imatrix,
            imatrix_q_method,
            private_repo,
            train_data_file,
            split_model,
            split_max_tensors,
            split_max_size,
            oauth_token,
            apply_aggressive_optimization,
            apply_reduce_layers,
            apply_smaller_embeddings,
            apply_weight_sharing,
            apply_low_rank_approx,
            use_lora_opt,
            use_adalora_opt,
            use_ia3_opt,
            use_prompt_tuning_opt,
            apply_moe_splitting,
            num_experts_moe,
            expert_capacity_factor_moe,
            moe_layer_freq_moe,
        ],
        outputs=[
            gr.Markdown(label="output"),
            gr.Image(show_label=False),
        ],
        title="Create your own GGUF Quants, blazingly fast ⚡!",
        description="The space takes an HF repo as an input, applies size reduction techniques, quantizes it and creates a Public or Private repo containing the selected quant under your HF user namespace. It also automates the creation of GGUF quants for popular models in the background.",
        api_name=False
    )

def restart_space():
    HfApi().restart_space(repo_id=SPACE_ID, token=HF_TOKEN, factory_reboot=True)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.add_job(automate_gguf_creation, "interval", hours=6) # Run automation every 6 hours
scheduler.start()

demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)