File size: 20,019 Bytes
cc1c557
 
 
 
bc1d53e
106dcad
cc1c557
 
 
d65d319
1af6864
cc1c557
 
 
 
 
 
 
 
1af6864
cc1c557
 
bc1d53e
cc1c557
bc1d53e
cc1c557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1d53e
 
cc1c557
 
 
 
bc1d53e
 
 
cc1c557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af6864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1d53e
 
1af6864
 
 
 
 
 
 
 
 
 
 
 
 
bc1d53e
 
 
 
1af6864
 
 
 
 
 
 
 
 
 
 
 
bc1d53e
 
1af6864
bc1d53e
 
1af6864
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1d53e
 
1af6864
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1d53e
1af6864
 
 
 
cc1c557
 
1af6864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc1c557
 
 
25790b6
cc1c557
 
 
 
 
 
 
 
25790b6
 
cc1c557
25790b6
1af6864
106dcad
cc1c557
 
 
 
 
 
 
 
25790b6
1af6864
cc1c557
 
 
1af6864
626cc4a
25790b6
cc1c557
25790b6
1af6864
cc1c557
 
 
1af6864
 
 
 
 
 
cc1c557
 
1af6864
cc1c557
 
 
 
1af6864
cc1c557
 
 
626cc4a
cc1c557
 
 
 
626cc4a
cc1c557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af6864
cc1c557
 
 
 
 
 
 
1af6864
cc1c557
 
 
 
1af6864
 
 
 
 
cc1c557
 
1af6864
 
cc1c557
 
 
 
 
 
 
 
 
 
 
bc1d53e
cc1c557
bc1d53e
 
 
 
 
 
 
 
 
cc1c557
 
bc1d53e
 
cc1c557
bc1d53e
 
 
cc1c557
 
 
25790b6
cc1c557
 
fe26d94
cc1c557
 
fe26d94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import os
import shutil
import subprocess
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from huggingface_hub import HfApi, whoami, ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from textwrap import dedent
import gradio as gr
import hashlib

os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
HF_TOKEN = os.environ.get("HF_TOKEN")

def generate_importance_matrix(model_path, train_data_path):
    os.chdir("llama.cpp")
    if not os.path.isfile(f"../{model_path}"):
        raise Exception(f"Model file not found: {model_path}")
    imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
    process = subprocess.Popen(imatrix_command, shell=True)
    try:
        process.wait(timeout=3600) 
    except subprocess.TimeoutExpired:
        process.kill()
    os.chdir("..")

def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
    if oauth_token.token is None:
        raise ValueError("You have to be logged in.")
    split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
    if split_max_size:
        split_cmd += f" --split-max-size {split_max_size}"
    split_cmd += f" {model_path} {model_path.split('.')[0]}"
    result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
    if result.returncode != 0:
        raise Exception(f"Error splitting the model: {result.stderr}")
    sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
    if sharded_model_files:
        api = HfApi(token=oauth_token.token)
        for file in sharded_model_files:
            file_path = os.path.join('.', file)
            try:
                api.upload_file(path_or_fileobj=file_path, path_in_repo=file, repo_id=repo_id)
            except Exception as e:
                raise Exception(f"Error uploading file {file_path}: {e}")
    else:
        raise Exception("No sharded files found.")

def quantize_to_q1_with_min(tensor, min_value=-1):
    tensor = torch.sign(tensor)
    tensor[tensor < min_value] = min_value
    return tensor

def quantize_model_to_q1_with_min(model, min_value=-1):
    for name, param in model.named_parameters():
        if param.dtype in [torch.float32, torch.float16]:
            with torch.no_grad():
                param.copy_(quantize_to_q1_with_min(param.data, min_value))

def disable_unnecessary_components(model):
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Dropout):
            module.p = 0.0
        elif isinstance(module, torch.nn.BatchNorm1d):
            module.eval()

def ultra_max_compress(model):
    model = quantize_model_to_q1_with_min(model, min_value=-0.05)
    disable_unnecessary_components(model)
    with torch.no_grad():
        for name, param in model.named_parameters():
            if param.requires_grad:
                param.requires_grad = False
                param.data = torch.nn.functional.hardtanh(param.data, min_val=-1.0, max_val=1.0)
                param.data = param.data.half() 
    model.eval()
    for buffer_name, buffer in model.named_buffers():
        if buffer.numel() == 0:
            model._buffers.pop(buffer_name)
    return model

def optimize_model_resources(model):
    torch.set_grad_enabled(False)
    model.eval()
    for name, param in model.named_parameters():
        param.requires_grad = False
        if param.dtype == torch.float32:
            param.data = param.data.half()
    if hasattr(model, 'config'):
        if hasattr(model.config, 'max_position_embeddings'):
            model.config.max_position_embeddings = min(model.config.max_position_embeddings, 512)
        if hasattr(model.config, 'hidden_size'):
            model.config.hidden_size = min(model.config.hidden_size, 768)
    return model

def aggressive_optimize(model, reduce_layers_factor=0.5):
    if hasattr(model.config, 'num_attention_heads'):
        model.config.num_attention_heads = int(model.config.num_attention_heads * reduce_layers_factor)
    if hasattr(model.config, 'hidden_size'):
        model.config.hidden_size = int(model.config.hidden_size * reduce_layers_factor)
    return model

def apply_quantization(model, use_int8_inference):
    if use_int8_inference:
        quantized_model = torch.quantization.quantize_dynamic(
            model, {torch.nn.Linear}, dtype=torch.qint8
        )
        return quantized_model
    else:
        return model

def reduce_layers(model, reduction_factor=0.5):
    if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
        original_num_layers = len(model.transformer.h)
        new_num_layers = int(original_num_layers * reduction_factor)
        model.transformer.h = torch.nn.ModuleList(model.transformer.h[:new_num_layers])
    return model

def use_smaller_embeddings(model, reduction_factor=0.75):
    original_embedding_dim = model.config.hidden_size
    new_embedding_dim = int(original_embedding_dim * reduction_factor)
    model.config.hidden_size = new_embedding_dim
    model.resize_token_embeddings(int(model.config.vocab_size * reduction_factor))
    return model

def use_fp16_embeddings(model):
    model.transformer.wte = model.transformer.wte.half()
    return model

def quantize_embeddings(model):
    model.transformer.wte = torch.quantization.quantize_dynamic(
        model.transformer.wte, {torch.nn.Embedding}, dtype=torch.qint8
    )
    return model

def use_bnb_f16(model):
    if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
        model = model.to(dtype=torch.bfloat16)
    return model

def use_group_quantization(model):
    for module in model.modules():
        if isinstance(module, torch.nn.Linear):
            torch.quantization.fuse_modules(module, ['weight'], inplace=True)
            torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
    return model

def apply_layer_norm_trick(model):
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.LayerNorm):
            module.elementwise_affine = False
    return model

def remove_padding(inputs, attention_mask):
    last_non_padded = attention_mask.sum(dim=1) - 1 
    gathered_inputs = torch.gather(inputs, dim=1, index=last_non_padded.unsqueeze(1).unsqueeze(2).expand(-1, -1, inputs.size(2)))
    return gathered_inputs

def use_selective_quantization(model):
    for module in model.modules():
        if isinstance(module, torch.nn.MultiheadAttention):
            torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
    return model

def use_mixed_precision(model):
    model.transformer.wte = model.transformer.wte.half()
    return model

def use_pruning_after_training(model, prune_amount=0.1):
    for name, module in model.named_modules():
        if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)):
            prune.l1_unstructured(module, name='weight', amount=prune_amount)
            prune.remove(module, 'weight')
    return model

def use_knowledge_distillation(model, teacher_model, temperature=2.0, alpha=0.5):
    teacher_model.eval()
    criterion = torch.nn.KLDivLoss(reduction='batchmean')

    def distillation_loss(student_logits, teacher_logits):
        student_probs = F.log_softmax(student_logits / temperature, dim=-1)
        teacher_probs = F.softmax(teacher_logits / temperature, dim=-1)
        return criterion(student_probs, teacher_probs) * (temperature**2)

    def train_step(inputs, labels):
        student_outputs = model(**inputs, labels=labels) 
        student_logits = student_outputs.logits 
        with torch.no_grad():
            teacher_outputs = teacher_model(**inputs)
            teacher_logits = teacher_outputs.logits 
        loss = alpha * student_outputs.loss + (1 - alpha) * distillation_loss(student_logits, teacher_logits)
        return loss

    return train_step

def use_weight_sharing(model):
    if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
        model.transformer.h[-1].load_state_dict(model.transformer.h[0].state_dict())
    return model

def use_low_rank_approximation(model, rank_factor=0.5):
    for module in model.modules():
        if isinstance(module, torch.nn.Linear):
            original_weight = module.weight.data
            U, S, V = torch.linalg.svd(original_weight) 
            rank = int(S.size(0) * rank_factor) 
            module.weight.data = U[:, :rank] @ torch.diag(S[:rank]) @ V[:rank, :]
    return model

def use_hashing_trick(model, num_hashes=1024):
    def hash_features(features):
        features_bytes = features.cpu().numpy().tobytes()
        hash_object = hashlib.sha256(features_bytes)
        hash_value = hash_object.hexdigest()
        hashed_features = int(hash_value, 16) % num_hashes
        return torch.tensor(hashed_features, device=features.device)

    original_forward = model.forward

    def forward(*args, **kwargs):
        inputs = args[0] 
        hashed_inputs = hash_features(inputs)
        return original_forward(hashed_inputs, *args[1:], **kwargs)

    model.forward = forward
    return model

def use_quantization_aware_training(model):
    model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
    torch.quantization.prepare_qat(model, inplace=True)
    torch.quantization.convert(model, inplace=True)
    return model

def use_gradient_checkpointing(model):
    def custom_forward(*inputs):
        return checkpoint(model, *inputs)
    model.forward = custom_forward
    return model

def use_channel_pruning(model, prune_amount=0.1):
    for module in model.modules():
        if isinstance(module, torch.nn.Conv2d):
            prune.ln_structured(module, name="weight", amount=prune_amount, n=2, dim=0)
            prune.remove(module, 'weight')
    return model

def use_sparse_tensors(model, sparsity_threshold=0.01):
    for name, param in model.named_parameters():
        if param.dim() >= 2 and param.is_floating_point():
            sparse_param = param.to_sparse()
            sparse_param._values()[sparse_param._values().abs() < sparsity_threshold] = 0
            param.data = sparse_param.to_dense()
    return model

def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, 
                 oauth_token: gr.OAuthToken | None):
    if oauth_token.token is None:
        raise ValueError("You must be logged in to use GGUF-my-repo")
    model_name = model_id.split('/')[-1]
    fp16 = f"{model_name}.fp16.gguf"

    try:
        api = HfApi(token=oauth_token.token)
        dl_pattern = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel", "*.md", "*.json", "*.model"]
        pattern = "*.safetensors" if any(file.path.endswith(".safetensors") for file in api.list_repo_tree(repo_id=model_id, recursive=True)) else "*.bin"
        dl_pattern += pattern
        api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
        conversion_script = "convert_hf_to_gguf.py"
        fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
        result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
        if result.returncode != 0:
            raise Exception(f"Error converting to fp16: {result.stderr}")

        
        imatrix_path = "llama.cpp/imatrix.dat"
        if use_imatrix:
            if train_data_file:
                train_data_path = train_data_file.name
            else:
                train_data_path = "groups_merged.txt"
            if not os.path.isfile(train_data_path):
                raise Exception(f"Training data file not found: {train_data_path}")
            generate_importance_matrix(fp16, train_data_path)
        
        username = whoami(oauth_token.token)["name"]
        quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
        quantized_gguf_path = quantized_gguf_name
        
        if use_imatrix:
            quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
        else:
            quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
        
        result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
        if result.returncode != 0:
            raise Exception(f"Error quantizing: {result.stderr}")

        try:
            subprocess.run(["llama.cpp/llama", "-m", quantized_gguf_path, "-p", "Test prompt"], check=True) 
        except Exception as e:
            raise Exception(f"Model verification failed: {e}")

        new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
        new_repo_id = new_repo_url.repo_id
        
        try:
            card = ModelCard.load(model_id, token=oauth_token.token)
        except:
            card = ModelCard("")
        
        if card.data.tags is None:
            card.data.tags = []
        card.data.tags.append("llama-cpp")
        card.data.tags.append("gguf-my-repo")
        card.data.base_model = model_id
        card.text = dedent(
            f"""
            # {new_repo_id}
            This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
            Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
            
            ## Use with llama.cpp
            Install llama.cpp through brew (works on Mac and Linux)
            
            ```bash
            brew install llama.cpp
            
            ```
            Invoke the llama.cpp server or the CLI.
            
            ### CLI:
            ```bash
            llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
            ```
            
            ### Server:
            ```bash
            llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
            ```
            
            Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
            Step 1: Clone llama.cpp from GitHub.
            ```
            git clone https://github.com/ggerganov/llama.cpp
            ```
            Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
            ```
            cd llama.cpp && LLAMA_CURL=1 make
            ```
            Step 3: Run inference through the main binary.
            ```
            ./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
            ```
            or 
            ```
            ./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
            ```
            """
        )
        card.save(f"README.md")

        if split_model:
            split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
        else:
            try:
                api.upload_file(path_or_fileobj=quantized_gguf_path, path_in_repo=quantized_gguf_name, repo_id=new_repo_id)
            except Exception as e:
                raise Exception(f"Error uploading quantized model: {e}")
        
        if os.path.isfile(imatrix_path):
            try:
                api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=new_repo_id)
            except Exception as e:
                raise Exception(f"Error uploading imatrix.dat: {e}")

        api.upload_file(path_or_fileobj=f"README.md", path_in_repo=f"README.md", repo_id=new_repo_id)
        
        return (f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', "llama.png")
    except Exception as e:
        return (f"Error: {e}", "error.png")
    finally:
        shutil.rmtree(model_name, ignore_errors=True)

css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;}"""

with gr.Blocks(css=css) as demo: 
    gr.Markdown("You must be logged in to use GGUF-my-repo.")
    gr.LoginButton(min_width=250)
    model_id = HuggingfaceHubSearch(label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model")

    q_method = gr.Dropdown(["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], 
                          label="Quantization Method", info="GGML quantization type", value="Q2_K", filterable=False, visible=True)
    imatrix_q_method = gr.Dropdown(["IQ1", "IQ1_S", "IQ1_XXS", "IQ2_S", "IQ2_XXS", "IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], 
                                  label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False)
    use_imatrix = gr.Checkbox(value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization.")
    train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False)

    private_repo = gr.Checkbox(value=False, label="Private Repo", info="Create a private repo under your username.")
    split_model = gr.Checkbox(value=False, label="Split Model", info="Shard the model using gguf-split.")
    split_max_tensors = gr.Number(value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False)
    split_max_size = gr.Textbox(label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.", visible=False)

    use_imatrix.change(fn=lambda use_imatrix:  gr.update(visible=not use_imatrix), inputs=use_imatrix, outputs=q_method)
    use_imatrix.change(fn=lambda use_imatrix:  gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=imatrix_q_method)
    use_imatrix.change(fn=lambda use_imatrix:  gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=train_data_file)
    split_model.change(fn=lambda split_model:  gr.update(visible=split_model), inputs=split_model, outputs=split_max_tensors)
    split_model.change(fn=lambda split_model:  gr.update(visible=split_model), inputs=split_model, outputs=split_max_size)

    iface = gr.Interface(
        fn=process_model, 
        inputs=[
            model_id, 
            q_method, 
            use_imatrix,
            imatrix_q_method,
            private_repo, 
            train_data_file, 
            split_model, 
            split_max_tensors, 
            split_max_size 
        ],
        outputs=[
            gr.Markdown(label="output"), 
            gr.Image(show_label=False), 
        ],
        title="Create your own GGUF Quants, blazingly fast ⚡!", 
        description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.", 
        api_name=False 
    )

def restart_space():
    HfApi().restart_space(repo_id="Ffftdtd5dtft/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()

demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)