gguf-my-repo / app.py
Ffftdtd5dtft's picture
Update app.py
106dcad verified
import os
import shutil
import subprocess
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from huggingface_hub import HfApi, whoami, ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from textwrap import dedent
import gradio as gr
import hashlib
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
HF_TOKEN = os.environ.get("HF_TOKEN")
def generate_importance_matrix(model_path, train_data_path):
os.chdir("llama.cpp")
if not os.path.isfile(f"../{model_path}"):
raise Exception(f"Model file not found: {model_path}")
imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
process = subprocess.Popen(imatrix_command, shell=True)
try:
process.wait(timeout=3600)
except subprocess.TimeoutExpired:
process.kill()
os.chdir("..")
def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
if oauth_token.token is None:
raise ValueError("You have to be logged in.")
split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
if split_max_size:
split_cmd += f" --split-max-size {split_max_size}"
split_cmd += f" {model_path} {model_path.split('.')[0]}"
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Error splitting the model: {result.stderr}")
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
if sharded_model_files:
api = HfApi(token=oauth_token.token)
for file in sharded_model_files:
file_path = os.path.join('.', file)
try:
api.upload_file(path_or_fileobj=file_path, path_in_repo=file, repo_id=repo_id)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
else:
raise Exception("No sharded files found.")
def quantize_to_q1_with_min(tensor, min_value=-1):
tensor = torch.sign(tensor)
tensor[tensor < min_value] = min_value
return tensor
def quantize_model_to_q1_with_min(model, min_value=-1):
for name, param in model.named_parameters():
if param.dtype in [torch.float32, torch.float16]:
with torch.no_grad():
param.copy_(quantize_to_q1_with_min(param.data, min_value))
def disable_unnecessary_components(model):
for name, module in model.named_modules():
if isinstance(module, torch.nn.Dropout):
module.p = 0.0
elif isinstance(module, torch.nn.BatchNorm1d):
module.eval()
def ultra_max_compress(model):
model = quantize_model_to_q1_with_min(model, min_value=-0.05)
disable_unnecessary_components(model)
with torch.no_grad():
for name, param in model.named_parameters():
if param.requires_grad:
param.requires_grad = False
param.data = torch.nn.functional.hardtanh(param.data, min_val=-1.0, max_val=1.0)
param.data = param.data.half()
model.eval()
for buffer_name, buffer in model.named_buffers():
if buffer.numel() == 0:
model._buffers.pop(buffer_name)
return model
def optimize_model_resources(model):
torch.set_grad_enabled(False)
model.eval()
for name, param in model.named_parameters():
param.requires_grad = False
if param.dtype == torch.float32:
param.data = param.data.half()
if hasattr(model, 'config'):
if hasattr(model.config, 'max_position_embeddings'):
model.config.max_position_embeddings = min(model.config.max_position_embeddings, 512)
if hasattr(model.config, 'hidden_size'):
model.config.hidden_size = min(model.config.hidden_size, 768)
return model
def aggressive_optimize(model, reduce_layers_factor=0.5):
if hasattr(model.config, 'num_attention_heads'):
model.config.num_attention_heads = int(model.config.num_attention_heads * reduce_layers_factor)
if hasattr(model.config, 'hidden_size'):
model.config.hidden_size = int(model.config.hidden_size * reduce_layers_factor)
return model
def apply_quantization(model, use_int8_inference):
if use_int8_inference:
quantized_model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
return quantized_model
else:
return model
def reduce_layers(model, reduction_factor=0.5):
if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
original_num_layers = len(model.transformer.h)
new_num_layers = int(original_num_layers * reduction_factor)
model.transformer.h = torch.nn.ModuleList(model.transformer.h[:new_num_layers])
return model
def use_smaller_embeddings(model, reduction_factor=0.75):
original_embedding_dim = model.config.hidden_size
new_embedding_dim = int(original_embedding_dim * reduction_factor)
model.config.hidden_size = new_embedding_dim
model.resize_token_embeddings(int(model.config.vocab_size * reduction_factor))
return model
def use_fp16_embeddings(model):
model.transformer.wte = model.transformer.wte.half()
return model
def quantize_embeddings(model):
model.transformer.wte = torch.quantization.quantize_dynamic(
model.transformer.wte, {torch.nn.Embedding}, dtype=torch.qint8
)
return model
def use_bnb_f16(model):
if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
model = model.to(dtype=torch.bfloat16)
return model
def use_group_quantization(model):
for module in model.modules():
if isinstance(module, torch.nn.Linear):
torch.quantization.fuse_modules(module, ['weight'], inplace=True)
torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
return model
def apply_layer_norm_trick(model):
for name, module in model.named_modules():
if isinstance(module, torch.nn.LayerNorm):
module.elementwise_affine = False
return model
def remove_padding(inputs, attention_mask):
last_non_padded = attention_mask.sum(dim=1) - 1
gathered_inputs = torch.gather(inputs, dim=1, index=last_non_padded.unsqueeze(1).unsqueeze(2).expand(-1, -1, inputs.size(2)))
return gathered_inputs
def use_selective_quantization(model):
for module in model.modules():
if isinstance(module, torch.nn.MultiheadAttention):
torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
return model
def use_mixed_precision(model):
model.transformer.wte = model.transformer.wte.half()
return model
def use_pruning_after_training(model, prune_amount=0.1):
for name, module in model.named_modules():
if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)):
prune.l1_unstructured(module, name='weight', amount=prune_amount)
prune.remove(module, 'weight')
return model
def use_knowledge_distillation(model, teacher_model, temperature=2.0, alpha=0.5):
teacher_model.eval()
criterion = torch.nn.KLDivLoss(reduction='batchmean')
def distillation_loss(student_logits, teacher_logits):
student_probs = F.log_softmax(student_logits / temperature, dim=-1)
teacher_probs = F.softmax(teacher_logits / temperature, dim=-1)
return criterion(student_probs, teacher_probs) * (temperature**2)
def train_step(inputs, labels):
student_outputs = model(**inputs, labels=labels)
student_logits = student_outputs.logits
with torch.no_grad():
teacher_outputs = teacher_model(**inputs)
teacher_logits = teacher_outputs.logits
loss = alpha * student_outputs.loss + (1 - alpha) * distillation_loss(student_logits, teacher_logits)
return loss
return train_step
def use_weight_sharing(model):
if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
model.transformer.h[-1].load_state_dict(model.transformer.h[0].state_dict())
return model
def use_low_rank_approximation(model, rank_factor=0.5):
for module in model.modules():
if isinstance(module, torch.nn.Linear):
original_weight = module.weight.data
U, S, V = torch.linalg.svd(original_weight)
rank = int(S.size(0) * rank_factor)
module.weight.data = U[:, :rank] @ torch.diag(S[:rank]) @ V[:rank, :]
return model
def use_hashing_trick(model, num_hashes=1024):
def hash_features(features):
features_bytes = features.cpu().numpy().tobytes()
hash_object = hashlib.sha256(features_bytes)
hash_value = hash_object.hexdigest()
hashed_features = int(hash_value, 16) % num_hashes
return torch.tensor(hashed_features, device=features.device)
original_forward = model.forward
def forward(*args, **kwargs):
inputs = args[0]
hashed_inputs = hash_features(inputs)
return original_forward(hashed_inputs, *args[1:], **kwargs)
model.forward = forward
return model
def use_quantization_aware_training(model):
model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
torch.quantization.prepare_qat(model, inplace=True)
torch.quantization.convert(model, inplace=True)
return model
def use_gradient_checkpointing(model):
def custom_forward(*inputs):
return checkpoint(model, *inputs)
model.forward = custom_forward
return model
def use_channel_pruning(model, prune_amount=0.1):
for module in model.modules():
if isinstance(module, torch.nn.Conv2d):
prune.ln_structured(module, name="weight", amount=prune_amount, n=2, dim=0)
prune.remove(module, 'weight')
return model
def use_sparse_tensors(model, sparsity_threshold=0.01):
for name, param in model.named_parameters():
if param.dim() >= 2 and param.is_floating_point():
sparse_param = param.to_sparse()
sparse_param._values()[sparse_param._values().abs() < sparsity_threshold] = 0
param.data = sparse_param.to_dense()
return model
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size,
oauth_token: gr.OAuthToken | None):
if oauth_token.token is None:
raise ValueError("You must be logged in to use GGUF-my-repo")
model_name = model_id.split('/')[-1]
fp16 = f"{model_name}.fp16.gguf"
try:
api = HfApi(token=oauth_token.token)
dl_pattern = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel", "*.md", "*.json", "*.model"]
pattern = "*.safetensors" if any(file.path.endswith(".safetensors") for file in api.list_repo_tree(repo_id=model_id, recursive=True)) else "*.bin"
dl_pattern += pattern
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
conversion_script = "convert_hf_to_gguf.py"
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
if result.returncode != 0:
raise Exception(f"Error converting to fp16: {result.stderr}")
imatrix_path = "llama.cpp/imatrix.dat"
if use_imatrix:
if train_data_file:
train_data_path = train_data_file.name
else:
train_data_path = "groups_merged.txt"
if not os.path.isfile(train_data_path):
raise Exception(f"Training data file not found: {train_data_path}")
generate_importance_matrix(fp16, train_data_path)
username = whoami(oauth_token.token)["name"]
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
quantized_gguf_path = quantized_gguf_name
if use_imatrix:
quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
else:
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
if result.returncode != 0:
raise Exception(f"Error quantizing: {result.stderr}")
try:
subprocess.run(["llama.cpp/llama", "-m", quantized_gguf_path, "-p", "Test prompt"], check=True)
except Exception as e:
raise Exception(f"Model verification failed: {e}")
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("llama-cpp")
card.data.tags.append("gguf-my-repo")
card.data.base_model = model_id
card.text = dedent(
f"""
# {new_repo_id}
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
```
"""
)
card.save(f"README.md")
if split_model:
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
else:
try:
api.upload_file(path_or_fileobj=quantized_gguf_path, path_in_repo=quantized_gguf_name, repo_id=new_repo_id)
except Exception as e:
raise Exception(f"Error uploading quantized model: {e}")
if os.path.isfile(imatrix_path):
try:
api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=new_repo_id)
except Exception as e:
raise Exception(f"Error uploading imatrix.dat: {e}")
api.upload_file(path_or_fileobj=f"README.md", path_in_repo=f"README.md", repo_id=new_repo_id)
return (f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', "llama.png")
except Exception as e:
return (f"Error: {e}", "error.png")
finally:
shutil.rmtree(model_name, ignore_errors=True)
css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;}"""
with gr.Blocks(css=css) as demo:
gr.Markdown("You must be logged in to use GGUF-my-repo.")
gr.LoginButton(min_width=250)
model_id = HuggingfaceHubSearch(label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model")
q_method = gr.Dropdown(["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
label="Quantization Method", info="GGML quantization type", value="Q2_K", filterable=False, visible=True)
imatrix_q_method = gr.Dropdown(["IQ1", "IQ1_S", "IQ1_XXS", "IQ2_S", "IQ2_XXS", "IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False)
use_imatrix = gr.Checkbox(value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization.")
train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False)
private_repo = gr.Checkbox(value=False, label="Private Repo", info="Create a private repo under your username.")
split_model = gr.Checkbox(value=False, label="Split Model", info="Shard the model using gguf-split.")
split_max_tensors = gr.Number(value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False)
split_max_size = gr.Textbox(label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.", visible=False)
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=not use_imatrix), inputs=use_imatrix, outputs=q_method)
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=imatrix_q_method)
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=train_data_file)
split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_tensors)
split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_size)
iface = gr.Interface(
fn=process_model,
inputs=[
model_id,
q_method,
use_imatrix,
imatrix_q_method,
private_repo,
train_data_file,
split_model,
split_max_tensors,
split_max_size
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own GGUF Quants, blazingly fast ⚡!",
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
api_name=False
)
def restart_space():
HfApi().restart_space(repo_id="Ffftdtd5dtft/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)