Spaces:
Runtime error
Runtime error
Ffftdtd5dtft
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import os
|
|
2 |
import shutil
|
3 |
import subprocess
|
4 |
import signal
|
|
|
|
|
5 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
6 |
import gradio as gr
|
7 |
|
@@ -9,6 +11,7 @@ from huggingface_hub import create_repo, HfApi
|
|
9 |
from huggingface_hub import snapshot_download
|
10 |
from huggingface_hub import whoami
|
11 |
from huggingface_hub import ModelCard
|
|
|
12 |
|
13 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
14 |
|
@@ -20,59 +23,35 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
20 |
|
21 |
def generate_importance_matrix(model_path, train_data_path):
|
22 |
imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
|
23 |
-
|
24 |
os.chdir("llama.cpp")
|
25 |
-
|
26 |
-
print(f"Current working directory: {os.getcwd()}")
|
27 |
-
print(f"Files in the current directory: {os.listdir('.')}")
|
28 |
-
|
29 |
if not os.path.isfile(f"../{model_path}"):
|
30 |
raise Exception(f"Model file not found: {model_path}")
|
31 |
-
|
32 |
-
print("Running imatrix command...")
|
33 |
process = subprocess.Popen(imatrix_command, shell=True)
|
34 |
-
|
35 |
try:
|
36 |
-
process.wait(timeout=60)
|
37 |
except subprocess.TimeoutExpired:
|
38 |
-
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
|
39 |
process.send_signal(signal.SIGINT)
|
40 |
try:
|
41 |
-
process.wait(timeout=5)
|
42 |
except subprocess.TimeoutExpired:
|
43 |
-
print("Imatrix proc still didn't term. Forecfully terming process...")
|
44 |
process.kill()
|
45 |
-
|
46 |
os.chdir("..")
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
51 |
if oauth_token.token is None:
|
52 |
raise ValueError("You have to be logged in.")
|
53 |
-
|
54 |
split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
|
55 |
if split_max_size:
|
56 |
split_cmd += f" --split-max-size {split_max_size}"
|
57 |
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
58 |
-
|
59 |
-
print(f"Split command: {split_cmd}")
|
60 |
-
|
61 |
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
62 |
-
print(f"Split command stdout: {result.stdout}")
|
63 |
-
print(f"Split command stderr: {result.stderr}")
|
64 |
-
|
65 |
if result.returncode != 0:
|
66 |
raise Exception(f"Error splitting the model: {result.stderr}")
|
67 |
-
print("Model split successfully!")
|
68 |
-
|
69 |
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
70 |
if sharded_model_files:
|
71 |
-
print(f"Sharded model files: {sharded_model_files}")
|
72 |
api = HfApi(token=oauth_token.token)
|
73 |
for file in sharded_model_files:
|
74 |
file_path = os.path.join('.', file)
|
75 |
-
print(f"Uploading file: {file_path}")
|
76 |
try:
|
77 |
api.upload_file(
|
78 |
path_or_fileobj=file_path,
|
@@ -83,123 +62,97 @@ def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, s
|
|
83 |
raise Exception(f"Error uploading file {file_path}: {e}")
|
84 |
else:
|
85 |
raise Exception("No sharded files found.")
|
86 |
-
|
87 |
-
print("Sharded model has been uploaded successfully!")
|
88 |
|
89 |
-
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token
|
90 |
if oauth_token.token is None:
|
91 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
92 |
model_name = model_id.split('/')[-1]
|
93 |
-
fp16 = f"{model_name}.fp16.gguf"
|
94 |
-
|
95 |
try:
|
96 |
api = HfApi(token=oauth_token.token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
"*.safetensors"
|
106 |
-
if any(
|
107 |
-
file.path.endswith(".safetensors")
|
108 |
-
for file in api.list_repo_tree(
|
109 |
-
repo_id=model_id,
|
110 |
-
recursive=True,
|
111 |
-
)
|
112 |
-
)
|
113 |
-
else "*.bin"
|
114 |
-
)
|
115 |
-
|
116 |
-
dl_pattern += pattern
|
117 |
-
|
118 |
-
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
119 |
-
print("Model downloaded successfully!")
|
120 |
-
print(f"Current working directory: {os.getcwd()}")
|
121 |
-
print(f"Model directory contents: {os.listdir(model_name)}")
|
122 |
|
|
|
|
|
123 |
conversion_script = "convert_hf_to_gguf.py"
|
124 |
-
fp16_conversion = f"python llama.cpp/{conversion_script} {
|
125 |
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
126 |
-
print(result)
|
127 |
if result.returncode != 0:
|
128 |
raise Exception(f"Error converting to fp16: {result.stderr}")
|
129 |
-
print("Model converted to fp16 successfully!")
|
130 |
-
print(f"Converted model path: {fp16}")
|
131 |
|
|
|
132 |
imatrix_path = "llama.cpp/imatrix.dat"
|
133 |
-
|
134 |
if use_imatrix:
|
135 |
if train_data_file:
|
136 |
train_data_path = train_data_file.name
|
137 |
else:
|
138 |
-
train_data_path = "groups_merged.txt"
|
139 |
-
|
140 |
-
print(f"Training data file path: {train_data_path}")
|
141 |
-
|
142 |
if not os.path.isfile(train_data_path):
|
143 |
raise Exception(f"Training data file not found: {train_data_path}")
|
144 |
-
|
145 |
generate_importance_matrix(fp16, train_data_path)
|
146 |
-
else
|
147 |
-
print("Not using imatrix quantization.")
|
148 |
-
|
149 |
username = whoami(oauth_token.token)["name"]
|
150 |
-
quantized_gguf_name = f"{model_name.lower()}-{
|
151 |
quantized_gguf_path = quantized_gguf_name
|
152 |
-
|
153 |
-
if use_imatrix:
|
154 |
-
quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
|
155 |
-
else:
|
156 |
-
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
|
157 |
-
|
158 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
159 |
if result.returncode != 0:
|
160 |
raise Exception(f"Error quantizing: {result.stderr}")
|
161 |
-
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
162 |
-
print(f"Quantized model path: {quantized_gguf_path}")
|
163 |
|
164 |
-
#
|
165 |
-
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{
|
166 |
new_repo_id = new_repo_url.repo_id
|
167 |
-
print("Repo created successfully!", new_repo_url)
|
168 |
-
|
169 |
try:
|
170 |
card = ModelCard.load(model_id, token=oauth_token.token)
|
171 |
-
except:
|
172 |
card = ModelCard("")
|
173 |
if card.data.tags is None:
|
174 |
card.data.tags = []
|
175 |
-
card.data.tags.
|
176 |
-
card.data.tags.append("gguf-my-repo")
|
177 |
card.data.base_model = model_id
|
178 |
card.text = dedent(
|
179 |
f"""
|
180 |
# {new_repo_id}
|
181 |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
182 |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
183 |
-
|
184 |
## Use with llama.cpp
|
185 |
Install llama.cpp through brew (works on Mac and Linux)
|
186 |
-
|
187 |
```bash
|
188 |
brew install llama.cpp
|
189 |
-
|
190 |
```
|
191 |
Invoke the llama.cpp server or the CLI.
|
192 |
-
|
193 |
### CLI:
|
194 |
```bash
|
195 |
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
196 |
```
|
197 |
-
|
198 |
### Server:
|
199 |
```bash
|
200 |
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
201 |
```
|
202 |
-
|
203 |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
204 |
Step 1: Clone llama.cpp from GitHub.
|
205 |
```
|
@@ -224,35 +177,22 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
224 |
if split_model:
|
225 |
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
226 |
else:
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
repo_id=new_repo_id,
|
233 |
-
)
|
234 |
-
except Exception as e:
|
235 |
-
raise Exception(f"Error uploading quantized model: {e}")
|
236 |
-
|
237 |
-
imatrix_path = "llama.cpp/imatrix.dat"
|
238 |
if os.path.isfile(imatrix_path):
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
repo_id=new_repo_id,
|
245 |
-
)
|
246 |
-
except Exception as e:
|
247 |
-
raise Exception(f"Error uploading imatrix.dat: {e}")
|
248 |
-
|
249 |
api.upload_file(
|
250 |
path_or_fileobj=f"README.md",
|
251 |
path_in_repo=f"README.md",
|
252 |
repo_id=new_repo_id,
|
253 |
)
|
254 |
-
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
255 |
-
|
256 |
return (
|
257 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
258 |
"llama.png",
|
@@ -261,13 +201,12 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
261 |
return (f"Error: {e}", "error.png")
|
262 |
finally:
|
263 |
shutil.rmtree(model_name, ignore_errors=True)
|
264 |
-
print("Folder cleaned up successfully!")
|
265 |
|
266 |
-
css="""/* Custom CSS to allow scrolling */
|
267 |
.gradio-container {overflow-y: auto;}
|
268 |
"""
|
269 |
-
|
270 |
-
with gr.Blocks(css=css) as demo:
|
271 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
272 |
gr.LoginButton(min_width=250)
|
273 |
|
@@ -290,7 +229,7 @@ with gr.Blocks(css=css) as demo:
|
|
290 |
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
291 |
label="Imatrix Quantization Method",
|
292 |
info="GGML imatrix quants type",
|
293 |
-
value="IQ4_NL",
|
294 |
filterable=False,
|
295 |
visible=False
|
296 |
)
|
@@ -332,15 +271,25 @@ with gr.Blocks(css=css) as demo:
|
|
332 |
visible=False
|
333 |
)
|
334 |
|
335 |
-
def update_visibility(use_imatrix):
|
336 |
-
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
|
337 |
-
|
338 |
use_imatrix.change(
|
339 |
-
fn=
|
|
|
|
|
|
|
|
|
340 |
inputs=use_imatrix,
|
341 |
outputs=[q_method, imatrix_q_method, train_data_file]
|
342 |
)
|
343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
iface = gr.Interface(
|
345 |
fn=process_model,
|
346 |
inputs=[
|
@@ -363,15 +312,6 @@ with gr.Blocks(css=css) as demo:
|
|
363 |
api_name=False
|
364 |
)
|
365 |
|
366 |
-
def update_split_visibility(split_model):
|
367 |
-
return gr.update(visible=split_model), gr.update(visible=split_model)
|
368 |
-
|
369 |
-
split_model.change(
|
370 |
-
fn=update_split_visibility,
|
371 |
-
inputs=split_model,
|
372 |
-
outputs=[split_max_tensors, split_max_size]
|
373 |
-
)
|
374 |
-
|
375 |
def restart_space():
|
376 |
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
377 |
|
@@ -379,5 +319,4 @@ scheduler = BackgroundScheduler()
|
|
379 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
380 |
scheduler.start()
|
381 |
|
382 |
-
|
383 |
-
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|
|
|
2 |
import shutil
|
3 |
import subprocess
|
4 |
import signal
|
5 |
+
import re
|
6 |
+
|
7 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
8 |
import gradio as gr
|
9 |
|
|
|
11 |
from huggingface_hub import snapshot_download
|
12 |
from huggingface_hub import whoami
|
13 |
from huggingface_hub import ModelCard
|
14 |
+
from huggingface_hub.utils import RepositoryNotFoundError
|
15 |
|
16 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
17 |
|
|
|
23 |
|
24 |
def generate_importance_matrix(model_path, train_data_path):
|
25 |
imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
|
|
|
26 |
os.chdir("llama.cpp")
|
|
|
|
|
|
|
|
|
27 |
if not os.path.isfile(f"../{model_path}"):
|
28 |
raise Exception(f"Model file not found: {model_path}")
|
|
|
|
|
29 |
process = subprocess.Popen(imatrix_command, shell=True)
|
|
|
30 |
try:
|
31 |
+
process.wait(timeout=60)
|
32 |
except subprocess.TimeoutExpired:
|
|
|
33 |
process.send_signal(signal.SIGINT)
|
34 |
try:
|
35 |
+
process.wait(timeout=5)
|
36 |
except subprocess.TimeoutExpired:
|
|
|
37 |
process.kill()
|
|
|
38 |
os.chdir("..")
|
39 |
|
40 |
+
def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
|
|
|
|
|
41 |
if oauth_token.token is None:
|
42 |
raise ValueError("You have to be logged in.")
|
|
|
43 |
split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
|
44 |
if split_max_size:
|
45 |
split_cmd += f" --split-max-size {split_max_size}"
|
46 |
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
|
|
|
|
|
|
47 |
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
|
|
|
|
|
|
48 |
if result.returncode != 0:
|
49 |
raise Exception(f"Error splitting the model: {result.stderr}")
|
|
|
|
|
50 |
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
51 |
if sharded_model_files:
|
|
|
52 |
api = HfApi(token=oauth_token.token)
|
53 |
for file in sharded_model_files:
|
54 |
file_path = os.path.join('.', file)
|
|
|
55 |
try:
|
56 |
api.upload_file(
|
57 |
path_or_fileobj=file_path,
|
|
|
62 |
raise Exception(f"Error uploading file {file_path}: {e}")
|
63 |
else:
|
64 |
raise Exception("No sharded files found.")
|
|
|
|
|
65 |
|
66 |
+
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token):
|
67 |
if oauth_token.token is None:
|
68 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
69 |
model_name = model_id.split('/')[-1]
|
|
|
|
|
70 |
try:
|
71 |
api = HfApi(token=oauth_token.token)
|
72 |
+
try:
|
73 |
+
# Attempt to download using the model ID directly
|
74 |
+
snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False)
|
75 |
+
except RepositoryNotFoundError:
|
76 |
+
# If the model ID is not found, search for it
|
77 |
+
print(f"Model ID not found directly. Searching for: {model_id}")
|
78 |
+
search_results = api.list_models(search=model_id, limit=1)
|
79 |
+
if search_results:
|
80 |
+
found_model_id = search_results[0].modelId
|
81 |
+
print(f"Found model ID: {found_model_id}")
|
82 |
+
snapshot_download(repo_id=found_model_id, local_dir=model_name, local_dir_use_symlinks=False)
|
83 |
+
else:
|
84 |
+
raise ValueError(f"Model not found: {model_id}")
|
85 |
|
86 |
+
# Find the model file
|
87 |
+
for filename in os.listdir(model_name):
|
88 |
+
if filename.endswith((".bin", ".pt", ".safetensors")):
|
89 |
+
model_file = os.path.join(model_name, filename)
|
90 |
+
break
|
91 |
+
else:
|
92 |
+
raise ValueError("No model file found in the downloaded files.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Convert to fp16
|
95 |
+
fp16 = f"{model_name}.fp16.gguf"
|
96 |
conversion_script = "convert_hf_to_gguf.py"
|
97 |
+
fp16_conversion = f"python llama.cpp/{conversion_script} {model_file} --outtype f16 --outfile {fp16}"
|
98 |
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
|
|
99 |
if result.returncode != 0:
|
100 |
raise Exception(f"Error converting to fp16: {result.stderr}")
|
|
|
|
|
101 |
|
102 |
+
# Quantization
|
103 |
imatrix_path = "llama.cpp/imatrix.dat"
|
|
|
104 |
if use_imatrix:
|
105 |
if train_data_file:
|
106 |
train_data_path = train_data_file.name
|
107 |
else:
|
108 |
+
train_data_path = "groups_merged.txt"
|
|
|
|
|
|
|
109 |
if not os.path.isfile(train_data_path):
|
110 |
raise Exception(f"Training data file not found: {train_data_path}")
|
|
|
111 |
generate_importance_matrix(fp16, train_data_path)
|
112 |
+
quant_method = imatrix_q_method if use_imatrix else q_method
|
|
|
|
|
113 |
username = whoami(oauth_token.token)["name"]
|
114 |
+
quantized_gguf_name = f"{model_name.lower()}-{quant_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{quant_method.lower()}.gguf"
|
115 |
quantized_gguf_path = quantized_gguf_name
|
116 |
+
quantise_ggml = f"./llama.cpp/llama-quantize {'--imatrix' if use_imatrix else ''} {imatrix_path if use_imatrix else ''} {fp16} {quantized_gguf_path} {quant_method}"
|
|
|
|
|
|
|
|
|
|
|
117 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
118 |
if result.returncode != 0:
|
119 |
raise Exception(f"Error quantizing: {result.stderr}")
|
|
|
|
|
120 |
|
121 |
+
# Repo creation and upload
|
122 |
+
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{quant_method}-GGUF", exist_ok=True, private=private_repo)
|
123 |
new_repo_id = new_repo_url.repo_id
|
|
|
|
|
124 |
try:
|
125 |
card = ModelCard.load(model_id, token=oauth_token.token)
|
126 |
+
except Exception:
|
127 |
card = ModelCard("")
|
128 |
if card.data.tags is None:
|
129 |
card.data.tags = []
|
130 |
+
card.data.tags.extend(["llama-cpp", "gguf-my-repo"])
|
|
|
131 |
card.data.base_model = model_id
|
132 |
card.text = dedent(
|
133 |
f"""
|
134 |
# {new_repo_id}
|
135 |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
136 |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
137 |
+
|
138 |
## Use with llama.cpp
|
139 |
Install llama.cpp through brew (works on Mac and Linux)
|
140 |
+
|
141 |
```bash
|
142 |
brew install llama.cpp
|
|
|
143 |
```
|
144 |
Invoke the llama.cpp server or the CLI.
|
145 |
+
|
146 |
### CLI:
|
147 |
```bash
|
148 |
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
149 |
```
|
150 |
+
|
151 |
### Server:
|
152 |
```bash
|
153 |
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
154 |
```
|
155 |
+
|
156 |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
157 |
Step 1: Clone llama.cpp from GitHub.
|
158 |
```
|
|
|
177 |
if split_model:
|
178 |
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
179 |
else:
|
180 |
+
api.upload_file(
|
181 |
+
path_or_fileobj=quantized_gguf_path,
|
182 |
+
path_in_repo=quantized_gguf_name,
|
183 |
+
repo_id=new_repo_id,
|
184 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
if os.path.isfile(imatrix_path):
|
186 |
+
api.upload_file(
|
187 |
+
path_or_fileobj=imatrix_path,
|
188 |
+
path_in_repo="imatrix.dat",
|
189 |
+
repo_id=new_repo_id,
|
190 |
+
)
|
|
|
|
|
|
|
|
|
|
|
191 |
api.upload_file(
|
192 |
path_or_fileobj=f"README.md",
|
193 |
path_in_repo=f"README.md",
|
194 |
repo_id=new_repo_id,
|
195 |
)
|
|
|
|
|
196 |
return (
|
197 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
198 |
"llama.png",
|
|
|
201 |
return (f"Error: {e}", "error.png")
|
202 |
finally:
|
203 |
shutil.rmtree(model_name, ignore_errors=True)
|
|
|
204 |
|
205 |
+
css = """/* Custom CSS to allow scrolling */
|
206 |
.gradio-container {overflow-y: auto;}
|
207 |
"""
|
208 |
+
|
209 |
+
with gr.Blocks(css=css) as demo:
|
210 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
211 |
gr.LoginButton(min_width=250)
|
212 |
|
|
|
229 |
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
230 |
label="Imatrix Quantization Method",
|
231 |
info="GGML imatrix quants type",
|
232 |
+
value="IQ4_NL",
|
233 |
filterable=False,
|
234 |
visible=False
|
235 |
)
|
|
|
271 |
visible=False
|
272 |
)
|
273 |
|
|
|
|
|
|
|
274 |
use_imatrix.change(
|
275 |
+
fn=lambda use_imatrix: {
|
276 |
+
q_method: gr.update(visible=not use_imatrix),
|
277 |
+
imatrix_q_method: gr.update(visible=use_imatrix),
|
278 |
+
train_data_file: gr.update(visible=use_imatrix),
|
279 |
+
},
|
280 |
inputs=use_imatrix,
|
281 |
outputs=[q_method, imatrix_q_method, train_data_file]
|
282 |
)
|
283 |
|
284 |
+
split_model.change(
|
285 |
+
fn=lambda split_model: {
|
286 |
+
split_max_tensors: gr.update(visible=split_model),
|
287 |
+
split_max_size: gr.update(visible=split_model),
|
288 |
+
},
|
289 |
+
inputs=split_model,
|
290 |
+
outputs=[split_max_tensors, split_max_size]
|
291 |
+
)
|
292 |
+
|
293 |
iface = gr.Interface(
|
294 |
fn=process_model,
|
295 |
inputs=[
|
|
|
312 |
api_name=False
|
313 |
)
|
314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
def restart_space():
|
316 |
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
317 |
|
|
|
319 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
320 |
scheduler.start()
|
321 |
|
322 |
+
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|
|