Ffftdtd5dtft commited on
Commit
b0086f3
·
verified ·
1 Parent(s): 36f5cda

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +128 -214
app.py CHANGED
@@ -2,30 +2,29 @@ import os
2
  import shutil
3
  import subprocess
4
  import signal
5
- import re
6
-
7
- os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
8
  import gradio as gr
9
-
10
- from huggingface_hub import create_repo, HfApi
11
- from huggingface_hub import snapshot_download
12
- from huggingface_hub import whoami
13
- from huggingface_hub import ModelCard
14
- from huggingface_hub.utils import RepositoryNotFoundError
15
-
16
  from gradio_huggingfacehub_search import HuggingfaceHubSearch
17
-
18
- from apscheduler.schedulers.background import BackgroundScheduler
19
-
20
  from textwrap import dedent
21
 
22
- HF_TOKEN = os.environ.get("HF_TOKEN")
 
 
 
 
 
 
 
23
 
24
  def generate_importance_matrix(model_path, train_data_path):
 
25
  imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
 
26
  os.chdir("llama.cpp")
 
27
  if not os.path.isfile(f"../{model_path}"):
28
- raise Exception(f"Model file not found: {model_path}")
 
29
  process = subprocess.Popen(imatrix_command, shell=True)
30
  try:
31
  process.wait(timeout=60)
@@ -35,21 +34,26 @@ def generate_importance_matrix(model_path, train_data_path):
35
  process.wait(timeout=5)
36
  except subprocess.TimeoutExpired:
37
  process.kill()
 
38
  os.chdir("..")
39
 
40
  def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
41
- if oauth_token.token is None:
42
- raise ValueError("You have to be logged in.")
 
 
43
  split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
44
  if split_max_size:
45
  split_cmd += f" --split-max-size {split_max_size}"
46
  split_cmd += f" {model_path} {model_path.split('.')[0]}"
 
47
  result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
48
  if result.returncode != 0:
49
- raise Exception(f"Error splitting the model: {result.stderr}")
 
50
  sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
51
  if sharded_model_files:
52
- api = HfApi(token=oauth_token.token)
53
  for file in sharded_model_files:
54
  file_path = os.path.join('.', file)
55
  try:
@@ -59,142 +63,141 @@ def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256,
59
  repo_id=repo_id,
60
  )
61
  except Exception as e:
62
- raise Exception(f"Error uploading file {file_path}: {e}")
63
  else:
64
- raise Exception("No sharded files found.")
65
-
66
  def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token):
67
- if oauth_token.token is None:
68
- raise ValueError("You must be logged in to use GGUF-my-repo")
 
69
  model_name = model_id.split('/')[-1]
 
 
70
  try:
71
- api = HfApi(token=oauth_token.token)
72
- try:
73
- # Attempt to download using the model ID directly
74
- snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False)
75
- except RepositoryNotFoundError:
76
- # If the model ID is not found, search for it
77
- print(f"Model ID not found directly. Searching for: {model_id}")
78
- search_results = api.list_models(search=model_id, limit=1)
79
- if search_results:
80
- found_model_id = search_results[0].modelId
81
- print(f"Found model ID: {found_model_id}")
82
- snapshot_download(repo_id=found_model_id, local_dir=model_name, local_dir_use_symlinks=False)
83
- else:
84
- raise ValueError(f"Model not found: {model_id}")
 
 
 
 
 
85
 
86
- # Find the model file
87
- for filename in os.listdir(model_name):
88
- if filename.endswith((".bin", ".pt", ".safetensors")):
89
- model_file = os.path.join(model_name, filename)
90
- break
91
- else:
92
- raise ValueError("No model file found in the downloaded files.")
93
 
94
- # Convert to fp16
95
- fp16 = f"{model_name}.fp16.gguf"
96
  conversion_script = "convert_hf_to_gguf.py"
97
- fp16_conversion = f"python llama.cpp/{conversion_script} {model_file} --outtype f16 --outfile {fp16}"
98
  result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
99
  if result.returncode != 0:
100
- raise Exception(f"Error converting to fp16: {result.stderr}")
101
 
102
- # Quantization
103
  imatrix_path = "llama.cpp/imatrix.dat"
104
  if use_imatrix:
105
  if train_data_file:
106
  train_data_path = train_data_file.name
107
  else:
108
  train_data_path = "groups_merged.txt"
 
109
  if not os.path.isfile(train_data_path):
110
- raise Exception(f"Training data file not found: {train_data_path}")
 
111
  generate_importance_matrix(fp16, train_data_path)
112
- quant_method = imatrix_q_method if use_imatrix else q_method
113
- username = whoami(oauth_token.token)["name"]
114
- quantized_gguf_name = f"{model_name.lower()}-{quant_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{quant_method.lower()}.gguf"
115
  quantized_gguf_path = quantized_gguf_name
116
- quantise_ggml = f"./llama.cpp/llama-quantize {'--imatrix' if use_imatrix else ''} {imatrix_path if use_imatrix else ''} {fp16} {quantized_gguf_path} {quant_method}"
 
 
117
  result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
118
  if result.returncode != 0:
119
- raise Exception(f"Error quantizing: {result.stderr}")
120
 
121
- # Repo creation and upload
122
- new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{quant_method}-GGUF", exist_ok=True, private=private_repo)
123
  new_repo_id = new_repo_url.repo_id
 
124
  try:
125
- card = ModelCard.load(model_id, token=oauth_token.token)
126
- except Exception:
127
  card = ModelCard("")
128
  if card.data.tags is None:
129
  card.data.tags = []
130
- card.data.tags.extend(["llama-cpp", "gguf-my-repo"])
 
131
  card.data.base_model = model_id
132
  card.text = dedent(
133
  f"""
134
  # {new_repo_id}
135
- This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
136
- Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
137
-
138
- ## Use with llama.cpp
139
- Install llama.cpp through brew (works on Mac and Linux)
140
 
 
 
 
141
  ```bash
142
  brew install llama.cpp
143
  ```
144
- Invoke the llama.cpp server or the CLI.
 
145
 
146
  ### CLI:
147
  ```bash
148
- llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
149
  ```
150
 
151
- ### Server:
152
  ```bash
153
  llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
154
  ```
155
 
156
- Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
157
- Step 1: Clone llama.cpp from GitHub.
158
- ```
159
- git clone https://github.com/ggerganov/llama.cpp
160
- ```
161
- Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
162
- ```
163
- cd llama.cpp && LLAMA_CURL=1 make
164
- ```
165
- Step 3: Run inference through the main binary.
166
- ```
167
- ./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
168
- ```
169
- or
170
- ```
171
- ./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
172
- ```
173
  """
174
  )
175
  card.save(f"README.md")
176
 
177
  if split_model:
178
- split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
179
  else:
180
- api.upload_file(
181
- path_or_fileobj=quantized_gguf_path,
182
- path_in_repo=quantized_gguf_name,
183
- repo_id=new_repo_id,
184
- )
 
 
 
 
185
  if os.path.isfile(imatrix_path):
186
- api.upload_file(
187
- path_or_fileobj=imatrix_path,
188
- path_in_repo="imatrix.dat",
189
- repo_id=new_repo_id,
190
- )
 
 
 
 
191
  api.upload_file(
192
  path_or_fileobj=f"README.md",
193
  path_in_repo=f"README.md",
194
  repo_id=new_repo_id,
195
  )
 
196
  return (
197
- f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
198
  "llama.png",
199
  )
200
  except Exception as e:
@@ -202,121 +205,32 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
202
  finally:
203
  shutil.rmtree(model_name, ignore_errors=True)
204
 
205
- css = """/* Custom CSS to allow scrolling */
206
- .gradio-container {overflow-y: auto;}
207
- """
208
-
209
- with gr.Blocks(css=css) as demo:
210
- gr.Markdown("You must be logged in to use GGUF-my-repo.")
211
- gr.LoginButton(min_width=250)
212
-
213
- model_id = HuggingfaceHubSearch(
214
- label="Hub Model ID",
215
- placeholder="Search for model id on Huggingface",
216
- search_type="model",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217
  )
218
 
219
- q_method = gr.Dropdown(
220
- ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
221
- label="Quantization Method",
222
- info="GGML quantization type",
223
- value="Q4_K_M",
224
- filterable=False,
225
- visible=True
226
- )
227
-
228
- imatrix_q_method = gr.Dropdown(
229
- ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
230
- label="Imatrix Quantization Method",
231
- info="GGML imatrix quants type",
232
- value="IQ4_NL",
233
- filterable=False,
234
- visible=False
235
- )
236
-
237
- use_imatrix = gr.Checkbox(
238
- value=False,
239
- label="Use Imatrix Quantization",
240
- info="Use importance matrix for quantization."
241
- )
242
-
243
- private_repo = gr.Checkbox(
244
- value=False,
245
- label="Private Repo",
246
- info="Create a private repo under your username."
247
- )
248
-
249
- train_data_file = gr.File(
250
- label="Training Data File",
251
- file_types=["txt"],
252
- visible=False
253
- )
254
-
255
- split_model = gr.Checkbox(
256
- value=False,
257
- label="Split Model",
258
- info="Shard the model using gguf-split."
259
- )
260
-
261
- split_max_tensors = gr.Number(
262
- value=256,
263
- label="Max Tensors per File",
264
- info="Maximum number of tensors per file when splitting model.",
265
- visible=False
266
- )
267
-
268
- split_max_size = gr.Textbox(
269
- label="Max File Size",
270
- info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
271
- visible=False
272
- )
273
-
274
- use_imatrix.change(
275
- fn=lambda use_imatrix: {
276
- q_method: gr.update(visible=not use_imatrix),
277
- imatrix_q_method: gr.update(visible=use_imatrix),
278
- train_data_file: gr.update(visible=use_imatrix),
279
- },
280
- inputs=use_imatrix,
281
- outputs=[q_method, imatrix_q_method, train_data_file]
282
- )
283
-
284
- split_model.change(
285
- fn=lambda split_model: {
286
- split_max_tensors: gr.update(visible=split_model),
287
- split_max_size: gr.update(visible=split_model),
288
- },
289
- inputs=split_model,
290
- outputs=[split_max_tensors, split_max_size]
291
- )
292
-
293
- iface = gr.Interface(
294
- fn=process_model,
295
- inputs=[
296
- model_id,
297
- q_method,
298
- use_imatrix,
299
- imatrix_q_method,
300
- private_repo,
301
- train_data_file,
302
- split_model,
303
- split_max_tensors,
304
- split_max_size,
305
- ],
306
- outputs=[
307
- gr.Markdown(label="output"),
308
- gr.Image(show_label=False),
309
- ],
310
- title="Create your own GGUF Quants, blazingly fast ⚡!",
311
- description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
312
- api_name=False
313
- )
314
-
315
- def restart_space():
316
- HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
317
-
318
- scheduler = BackgroundScheduler()
319
- scheduler.add_job(restart_space, "interval", seconds=21600)
320
- scheduler.start()
321
-
322
- demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
 
2
  import shutil
3
  import subprocess
4
  import signal
 
 
 
5
  import gradio as gr
6
+ from huggingface_hub import create_repo, HfApi, snapshot_download, whoami, ModelCard
 
 
 
 
 
 
7
  from gradio_huggingfacehub_search import HuggingfaceHubSearch
 
 
 
8
  from textwrap import dedent
9
 
10
+ # Obtener el token de Hugging Face desde el entorno
11
+ HF_TOKEN = os.getenv("HF_TOKEN", "")
12
+
13
+ def ensure_valid_token(oauth_token):
14
+ """Verifica si el token es válido."""
15
+ if not oauth_token or not oauth_token.strip():
16
+ raise ValueError("Debe proporcionar un token válido.")
17
+ return oauth_token.strip()
18
 
19
  def generate_importance_matrix(model_path, train_data_path):
20
+ """Genera la matriz de importancia usando llama-imatrix."""
21
  imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
22
+
23
  os.chdir("llama.cpp")
24
+
25
  if not os.path.isfile(f"../{model_path}"):
26
+ raise FileNotFoundError(f"Archivo del modelo no encontrado: {model_path}")
27
+
28
  process = subprocess.Popen(imatrix_command, shell=True)
29
  try:
30
  process.wait(timeout=60)
 
34
  process.wait(timeout=5)
35
  except subprocess.TimeoutExpired:
36
  process.kill()
37
+
38
  os.chdir("..")
39
 
40
  def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
41
+ """Divide y sube el modelo en partes."""
42
+ if not oauth_token or not oauth_token.strip():
43
+ raise ValueError("Debe proporcionar un token válido.")
44
+
45
  split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
46
  if split_max_size:
47
  split_cmd += f" --split-max-size {split_max_size}"
48
  split_cmd += f" {model_path} {model_path.split('.')[0]}"
49
+
50
  result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
51
  if result.returncode != 0:
52
+ raise RuntimeError(f"Error al dividir el modelo: {result.stderr}")
53
+
54
  sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
55
  if sharded_model_files:
56
+ api = HfApi(token=oauth_token)
57
  for file in sharded_model_files:
58
  file_path = os.path.join('.', file)
59
  try:
 
63
  repo_id=repo_id,
64
  )
65
  except Exception as e:
66
+ raise RuntimeError(f"Error al subir el archivo {file_path}: {e}")
67
  else:
68
+ raise FileNotFoundError("No se encontraron archivos divididos.")
69
+
70
  def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token):
71
+ """Procesa el modelo descargado y realiza la conversión y subida."""
72
+ token = ensure_valid_token(oauth_token)
73
+
74
  model_name = model_id.split('/')[-1]
75
+ fp16 = f"{model_name}.fp16.gguf"
76
+
77
  try:
78
+ api = HfApi(token=token)
79
+ dl_pattern = [
80
+ "*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite",
81
+ "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel",
82
+ "*.md", "*.json", "*.model"
83
+ ]
84
+
85
+ pattern = (
86
+ "*.safetensors"
87
+ if any(
88
+ file.path.endswith(".safetensors")
89
+ for file in api.list_repo_tree(
90
+ repo_id=model_id,
91
+ recursive=True,
92
+ )
93
+ )
94
+ else "*.bin"
95
+ )
96
+ dl_pattern += pattern
97
 
98
+ snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
99
+ print("Modelo descargado exitosamente!")
 
 
 
 
 
100
 
 
 
101
  conversion_script = "convert_hf_to_gguf.py"
102
+ fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
103
  result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
104
  if result.returncode != 0:
105
+ raise RuntimeError(f"Error al convertir a fp16: {result.stderr}")
106
 
 
107
  imatrix_path = "llama.cpp/imatrix.dat"
108
  if use_imatrix:
109
  if train_data_file:
110
  train_data_path = train_data_file.name
111
  else:
112
  train_data_path = "groups_merged.txt"
113
+
114
  if not os.path.isfile(train_data_path):
115
+ raise FileNotFoundError(f"Archivo de datos de entrenamiento no encontrado: {train_data_path}")
116
+
117
  generate_importance_matrix(fp16, train_data_path)
118
+
119
+ quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
 
120
  quantized_gguf_path = quantized_gguf_name
121
+
122
+ quantise_ggml = f"./llama.cpp/llama-quantize {'--imatrix ' + imatrix_path if use_imatrix else ''} {fp16} {quantized_gguf_path} {imatrix_q_method if use_imatrix else q_method}"
123
+
124
  result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
125
  if result.returncode != 0:
126
+ raise RuntimeError(f"Error al cuantificar: {result.stderr}")
127
 
128
+ username = whoami(token)["name"]
129
+ new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
130
  new_repo_id = new_repo_url.repo_id
131
+
132
  try:
133
+ card = ModelCard.load(model_id, token=token)
134
+ except:
135
  card = ModelCard("")
136
  if card.data.tags is None:
137
  card.data.tags = []
138
+ card.data.tags.append("llama-cpp")
139
+ card.data.tags.append("gguf-my-repo")
140
  card.data.base_model = model_id
141
  card.text = dedent(
142
  f"""
143
  # {new_repo_id}
144
+ Este modelo fue convertido al formato GGUF desde [`{model_id}`](https://huggingface.co/{model_id}) usando llama.cpp a través del espacio GGUF-my-repo.
145
+ Consulta el [card del modelo original](https://huggingface.co/{model_id}) para más detalles.
 
 
 
146
 
147
+ ## Uso con llama.cpp
148
+ Instala llama.cpp a través de brew (funciona en Mac y Linux)
149
+
150
  ```bash
151
  brew install llama.cpp
152
  ```
153
+
154
+ Invoca el servidor llama.cpp o la CLI.
155
 
156
  ### CLI:
157
  ```bash
158
+ llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "El sentido de la vida y el universo es"
159
  ```
160
 
161
+ ### Servidor:
162
  ```bash
163
  llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
164
  ```
165
 
166
+ Nota: También puedes usar este punto de control directamente a través de los [pasos de uso](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listados en el repositorio llama.cpp.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
  """
168
  )
169
  card.save(f"README.md")
170
 
171
  if split_model:
172
+ split_upload_model(quantized_gguf_path, new_repo_id, token, split_max_tensors, split_max_size)
173
  else:
174
+ try:
175
+ api.upload_file(
176
+ path_or_fileobj=quantized_gguf_path,
177
+ path_in_repo=quantized_gguf_name,
178
+ repo_id=new_repo_id,
179
+ )
180
+ except Exception as e:
181
+ raise RuntimeError(f"Error al subir el modelo cuantificado: {e}")
182
+
183
  if os.path.isfile(imatrix_path):
184
+ try:
185
+ api.upload_file(
186
+ path_or_fileobj=imatrix_path,
187
+ path_in_repo="imatrix.dat",
188
+ repo_id=new_repo_id,
189
+ )
190
+ except Exception as e:
191
+ raise RuntimeError(f"Error al subir imatrix.dat: {e}")
192
+
193
  api.upload_file(
194
  path_or_fileobj=f"README.md",
195
  path_in_repo=f"README.md",
196
  repo_id=new_repo_id,
197
  )
198
+
199
  return (
200
+ f'Encuentra tu repositorio <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">aquí</a>',
201
  "llama.png",
202
  )
203
  except Exception as e:
 
205
  finally:
206
  shutil.rmtree(model_name, ignore_errors=True)
207
 
208
+ with gr.Blocks() as app:
209
+ gr.Markdown("# Procesamiento de Modelos")
210
+
211
+ # Campos de entrada para el procesamiento del modelo
212
+ with gr.Row():
213
+ model_id = gr.Textbox(label="ID del Modelo", placeholder="e.g., user/model_name")
214
+ q_method = gr.Dropdown(["method1", "method2"], label="Método de Cuantización")
215
+ use_imatrix = gr.Checkbox(label="Usar Matriz de Importancia")
216
+ imatrix_q_method = gr.Dropdown(["methodA", "methodB"], label="Método de Matriz de Importancia")
217
+ private_repo = gr.Checkbox(label="Repositorio Privado")
218
+ train_data_file = gr.File(label="Archivo de Datos de Entrenamiento", type="file")
219
+ split_model = gr.Checkbox(label="Dividir Modelo")
220
+ split_max_tensors = gr.Number(label="Max Tensors (para división)", value=256)
221
+ split_max_size = gr.Number(label="Max Tamaño (para división)", value=None)
222
+ oauth_token = gr.Textbox(label="Token de Hugging Face", type="password")
223
+
224
+ # Campos de salida
225
+ result = gr.HTML()
226
+ img = gr.Image()
227
+
228
+ # Botón de proceso
229
+ process_button = gr.Button("Procesar Modelo")
230
+ process_button.click(
231
+ process_model,
232
+ inputs=[model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token],
233
+ outputs=[result, img]
234
  )
235
 
236
+ app.launch()