|
import os |
|
from huggingface_hub import login |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
from PIL import Image |
|
|
|
import gradio as gr |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
import spaces |
|
|
|
import requests |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
|
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
|
|
fabrics = ['cotton', 'silk', 'denim', 'linen', 'polyester', 'wool', 'velvet'] |
|
patterns = ['striped', 'floral', 'geometric', 'abstract', 'solid', 'polka dots'] |
|
textile_designs = ['woven texture', 'embroidery', 'printed fabric', 'hand-dyed', 'quilting'] |
|
|
|
|
|
|
|
|
|
|
|
hf_token = os.getenv('HF_AUTH_TOKEN') |
|
if not hf_token: |
|
raise ValueError("Hugging Face token is not set in the environment variables.") |
|
login(token=hf_token) |
|
|
|
|
|
|
|
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") |
|
processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap") |
|
model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap") |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium") |
|
|
|
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
model2.to(device) |
|
model.to(device) |
|
pipe.to(device) |
|
|
|
|
|
|
|
@spaces.GPU(duration=150) |
|
def generate_caption_and_image(image, f, p, d): |
|
if f!=None and p!=None and d!=None and image!=None: |
|
img = image.convert("RGB") |
|
|
|
|
|
import random |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text = "a picture of " |
|
inputs = processor(img, text, return_tensors="pt").to(device) |
|
|
|
out = model2.generate(**inputs, num_beams = 3) |
|
|
|
|
|
|
|
caption2 = processor.decode(out[0], skip_special_tokens=True) |
|
|
|
|
|
inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250) |
|
inputs = {key: val.to(device) for key, val in inputs.items()} |
|
out = model.generate(**inputs) |
|
caption1 = processor.decode(out[0], skip_special_tokens=True) |
|
|
|
prompt = (f"Create a visually stunning clothing item inspired by: 1. Primary Context: {caption1}, describing the mood and thematic elements of the image. 2. Secondary Insights: {caption2}, providing complementary attributes and textures. 3. Fabric: '{f}', highlighting its qualities. 4. Pattern: '{p}', enhancing visual harmony. 5. Design Style: '{d}', for a refined finish. Use a clean grey/white background with realistic lighting and intricate details for a polished presentation.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generated_image = pipe(prompt).images[0] |
|
generated_image1 =pipe(prompt).images[0] |
|
|
|
return generated_image, generated_image1 |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_caption_and_image, |
|
inputs=[gr.Image(type="pil", label="Upload Image"), gr.Radio(fabrics, label="Select Fabric"), gr.Radio(patterns, label="Select Pattern"), gr.Radio(textile_designs, label="Select Textile Design")], |
|
|
|
outputs=[gr.Image(label="Generated Design 1"), gr.Image(label="Generated Design 2")], |
|
live=True |
|
) |
|
iface.launch(share=True) |
|
|
|
|
|
|
|
|
|
|