File size: 1,486 Bytes
eaff305 0d35bdf 698fe5b c9f4ef0 e74ed5f eaff305 3a824d8 0d35bdf 3a824d8 3659d89 3a824d8 aefd9a2 3a824d8 0d35bdf 3a824d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
# Available backend options are: "jax", "torch", "tensorflow".
import os
#os.environ["KERAS_BACKEND"] = "tensorflow"
#pip install -U keras huggingface_hub
#import keras
#model = keras.saving.load_model("hf://Fluospark128/Cassava_Disease_Classifier")
import streamlit as st
import tensorflow as tf
import numpy as np
from PIL import Image
# Load the model
#@st.cache_resource
def load_model():
model = tf.keras.models.load_model("cassava_leaf_disease_model.keras") #tf.keras.saving.load_model("hf://Fluospark128/Cassava_Disease_Classifier") cassava_model.h5
return model
model = load_model()
# Class labels
CLASS_NAMES = ["Cassava Bacterial Blight Disease", "Cassava Brown Streak Disease", "Cassava Green Mottle Disease", "Cassava Mosaic Disease", "Healthy"]
# Streamlit UI
st.title("Cassava Leaf Disease Identifier")
st.write("Upload an image of a cassava leaf to identify its disease.")
# File uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
image = Image.open(uploaded_file).resize((224, 224))
st.image(image, caption="Uploaded Image", use_column_width=True)
# Preprocess image
img_array = np.array(image) / 255.0 # Normalize
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
# Make prediction
prediction = model.predict(img_array)
predicted_class = CLASS_NAMES[np.argmax(prediction)]
st.write(f"Prediction: **{predicted_class}**")
|