Spaces:
Runtime error
Runtime error
import cv2 | |
from PIL import Image | |
import torch | |
import matplotlib.pyplot as plt | |
import torch.functional as F | |
import torch.nn as nn | |
import numpy as np | |
import torchvision.transforms as transform | |
# !pip install efficientnet_pytorch -q | |
from efficientnet_pytorch import EfficientNet | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
val_transform = transform.Compose([transform.Resize(size=(224, 224)), | |
transform.ToTensor(), | |
transform.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
]) | |
def transform_image(image, transforms): | |
# img = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) | |
img = transforms(image) | |
img = img.unsqueeze(0) | |
return img | |
class Efficient(nn.Module): | |
def __init__(self, num_classes:int=1): | |
super(Efficient, self).__init__() | |
self.model = EfficientNet.from_pretrained("efficientnet-b3") | |
self.pool = nn.AdaptiveAvgPool2d((1,1)) | |
self.fc = nn.Linear(1536, 256) | |
self.reg_model = nn.Sequential( | |
nn.BatchNorm1d(256), | |
nn.Linear(256, 500), | |
nn.BatchNorm1d(500), | |
nn.Tanh(), | |
nn.Dropout(0.2), | |
nn.Linear(500, 100), | |
nn.BatchNorm1d(100), | |
nn.Tanh(), | |
nn.Dropout(0.2), | |
nn.Linear(100, 4), | |
) | |
def forward(self, x): | |
x = self.model.extract_features(x) | |
x = self.pool(x) | |
x = x.view(-1, 1536) | |
x = self.fc(x) | |
x = self.reg_model(x) | |
return x | |
class ModelGradCam(nn.Module): | |
def __init__(self, base_model): | |
super(ModelGradCam, self).__init__() | |
self.base_model = base_model | |
self.features_conv = self.base_model.model.extract_features | |
self.pool = self.base_model.pool | |
self.fc = self.base_model.fc | |
self.classifier = self.base_model.reg_model | |
self.gradients = None | |
def activations_hook(self, grad): | |
self.gradients = grad | |
def forward(self, x): | |
x = self.features_conv(x) | |
h = x.register_hook(self.activations_hook) | |
x = self.pool(x) | |
x = x.view(-1, 1536) | |
x = self.fc(x) | |
x = self.classifier(x) | |
return x | |
def get_activations_gradient(self): | |
return self.gradients | |
def get_activations(self, x): | |
return self.features_conv(x) | |
def plot_grad_cam(model, x_ray_image, class_names, normalized=True): | |
model.eval() | |
# fig, axs = plt.subplots(1, 2, figsize=(15, 10)) | |
image = x_ray_image | |
outputs = torch.nn.functional.softmax(model(image), dim=1) | |
_, pred = torch.max(outputs, 1) | |
outputs[0][pred.detach().cpu().numpy()[0]].backward() | |
gradients = model.get_activations_gradient() | |
pooled_gradients = torch.mean(gradients, dim=[0, 2, 3]) | |
activations = model.get_activations(image).detach() | |
activations *= pooled_gradients.unsqueeze(-1).unsqueeze(-1) | |
heatmap = torch.mean(activations, dim=1).squeeze() | |
heatmap = np.maximum(heatmap.cpu(), 0) | |
heatmap /= torch.max(heatmap) | |
img = image.squeeze().permute(1, 2, 0).cpu().numpy() | |
img = img if normalized else img/255.0 | |
heatmap = cv2.resize(heatmap.numpy(), (img.shape[1], img.shape[0])) | |
heatmap = np.uint8(255 * heatmap) | |
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) | |
superimposed_img = heatmap * 0.0025 + img | |
outputs = outputs.tolist()[0] | |
output_dict = dict(zip(class_names, np.round(outputs,3))) | |
return superimposed_img, class_names[pred.item()], output_dict | |
# axs[0].imshow(img) | |
# axs[1].imshow(superimposed_img) | |
# axs[0].set_title(f'Predicted: {class_names[pred.item()]}\n Confidence: {conf.item():.2f}') | |
# axs[0].axis('off') | |
# axs[1].set_title(f'Predicted: {class_names[pred.item()]}\n Confidence: {conf.item():.2f}') | |
# axs[1].axis('off') | |
# plt.show() | |