hunterschep's picture
Update for chinese and fix ui
617bfb2 verified
raw
history blame
9.99 kB
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore
from datetime import datetime
import json
import tempfile
# Initialize Firebase
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config)
firebase_admin.initialize_app(cred)
db = firestore.client()
# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
# Language configuration
LANGUAGE = {
"en": {
"title": "ASR Demo with Editable Transcription",
"step1": "Step 1: Audio Upload & Transcription",
"audio_input": "Audio Input",
"transcribe_btn": "Transcribe Audio",
"step2": "Step 2: Review & Edit Transcription",
"original_text": "Original Transcription",
"corrected_text": "Corrected Transcription",
"transcription_placeholder": "Transcription will appear here...",
"step3": "Step 3: User Information",
"age_label": "Age",
"native_speaker": "Native Amis Speaker",
"step4": "Step 4: Save & Download",
"save_btn": "Save Correction to Database",
"save_status": "Save Status",
"download_btn": "Download Results (ZIP)",
"status_placeholder": "Status messages will appear here...",
"toggle_lang": "中文/English"
},
"zh": {
"title": "可編輯轉寫的語音辨識演示",
"step1": "步驟一: 音頻上傳與轉寫",
"audio_input": "音頻輸入",
"transcribe_btn": "開始轉寫",
"step2": "步驟二: 校對與編輯轉寫結果",
"original_text": "原始轉寫結果",
"corrected_text": "校正後文本",
"transcription_placeholder": "轉寫結果將顯示在此處...",
"step3": "步驟三: 用戶資訊",
"age_label": "年齡",
"native_speaker": "阿美族母語者",
"step4": "步驟四: 保存與下載",
"save_btn": "保存校正結果至數據庫",
"save_status": "保存狀態",
"download_btn": "下載結果(ZIP壓縮檔)",
"status_placeholder": "狀態訊息將顯示在此處...",
"toggle_lang": "English/中文"
}
}
current_lang = gr.State(value="en")
def transcribe(audio_file):
try:
audio, rate = librosa.load(audio_file, sr=16000)
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription.replace("[UNK]", "")
except Exception as e:
return f"Error processing file: {e}"
def transcribe_both(audio_file):
start_time = datetime.now()
transcription = transcribe(audio_file)
processing_time = (datetime.now() - start_time).total_seconds()
return transcription, transcription, processing_time
def store_correction(original_transcription, corrected_transcription, audio_file, processing_time, age, native_speaker):
try:
audio_metadata = {}
if audio_file and os.path.exists(audio_file):
audio, sr = librosa.load(audio_file, sr=16000)
duration = librosa.get_duration(y=audio, sr=sr)
file_size = os.path.getsize(audio_file)
audio_metadata = {'duration': duration, 'file_size': file_size}
combined_data = {
'original_text': original_transcription,
'corrected_text': corrected_transcription,
'timestamp': datetime.now().isoformat(),
'processing_time': processing_time,
'audio_metadata': audio_metadata,
'audio_url': None,
'model_name': MODEL_NAME,
'user_info': {
'native_amis_speaker': native_speaker,
'age': age
}
}
db.collection('transcriptions').add(combined_data)
return "Correction saved successfully!"
except Exception as e:
return f"Error saving correction: {e}"
def prepare_download(audio_file, original_transcription, corrected_transcription):
if audio_file is None:
return None
tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
tmp_zip.close()
with zipfile.ZipFile(tmp_zip.name, "w") as zf:
if os.path.exists(audio_file):
zf.write(audio_file, arcname="audio.wav")
orig_txt = "original_transcription.txt"
with open(orig_txt, "w", encoding="utf-8") as f:
f.write(original_transcription)
zf.write(orig_txt, arcname="original_transcription.txt")
os.remove(orig_txt)
corr_txt = "corrected_transcription.txt"
with open(corr_txt, "w", encoding="utf-8") as f:
f.write(corrected_transcription)
zf.write(corr_txt, arcname="corrected_transcription.txt")
os.remove(corr_txt)
return tmp_zip.name
def toggle_language(lang):
new_lang = "zh" if lang == "en" else "en"
lang_dict = LANGUAGE[new_lang]
return [
gr.Markdown.update(value=f"<h1 class='header'>{lang_dict['title']}</h1>"),
gr.Markdown.update(value=f"### {lang_dict['step1']}"),
gr.Audio.update(label=lang_dict['audio_input']),
gr.Button.update(value=lang_dict['transcribe_btn']),
gr.Markdown.update(value=f"### {lang_dict['step2']}"),
gr.Textbox.update(label=lang_dict['original_text'], placeholder=lang_dict['transcription_placeholder']),
gr.Textbox.update(label=lang_dict['corrected_text'], placeholder=lang_dict['transcription_placeholder']),
gr.Markdown.update(value=f"### {lang_dict['step3']}"),
gr.Slider.update(label=lang_dict['age_label']),
gr.Checkbox.update(label=lang_dict['native_speaker']),
gr.Markdown.update(value=f"### {lang_dict['step4']}"),
gr.Button.update(value=lang_dict['save_btn']),
gr.Textbox.update(label=lang_dict['save_status'], placeholder=lang_dict['status_placeholder']),
gr.Button.update(value=lang_dict['download_btn']),
gr.File.update(label=lang_dict['download_btn']),
gr.Button.update(value=lang_dict['toggle_lang']),
new_lang
]
with gr.Blocks(css="""
.container { max-width: 800px; margin: auto; padding: 20px; font-family: Arial, sans-serif; }
.header { text-align: center; margin-bottom: 30px; }
.section { margin-bottom: 30px; padding: 15px; border: 1px solid #ddd; border-radius: 8px; background-color: #f9f9f9; }
.section h3 { margin-top: 0; margin-bottom: 15px; text-align: center; }
.button-row { display: flex; justify-content: center; gap: 10px; flex-wrap: wrap; }
.lang-toggle { position: absolute; top: 20px; right: 20px; }
@media (max-width: 600px) { .gradio-row { flex-direction: column; } }
""") as demo:
current_lang.render()
with gr.Column(elem_classes="container"):
with gr.Row():
title_md = gr.Markdown(elem_classes="header")
lang_btn = gr.Button(LANGUAGE['en']['toggle_lang'], elem_classes="lang-toggle")
# Step 1
with gr.Column(elem_classes="section"):
step1_md = gr.Markdown()
with gr.Row():
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath")
transcribe_button = gr.Button(variant="primary")
proc_time_state = gr.State()
# Step 2
with gr.Column(elem_classes="section"):
step2_md = gr.Markdown()
with gr.Row():
original_text = gr.Textbox(interactive=False, lines=5)
corrected_text = gr.Textbox(interactive=True, lines=5)
# Step 3
with gr.Column(elem_classes="section"):
step3_md = gr.Markdown()
with gr.Row():
age_input = gr.Slider(minimum=0, maximum=100, step=1, value=25)
native_speaker_input = gr.Checkbox(value=True)
# Step 4
with gr.Column(elem_classes="section"):
step4_md = gr.Markdown()
with gr.Row(elem_classes="button-row"):
save_button = gr.Button(variant="primary")
save_status = gr.Textbox(interactive=False)
with gr.Row(elem_classes="button-row"):
download_button = gr.Button()
download_output = gr.File()
lang_btn.click(
toggle_language,
inputs=current_lang,
outputs=[
title_md, step1_md, audio_input, transcribe_button,
step2_md, original_text, corrected_text, step3_md,
age_input, native_speaker_input, step4_md, save_button,
save_status, download_button, download_output, lang_btn,
current_lang
]
)
transcribe_button.click(
transcribe_both,
inputs=audio_input,
outputs=[original_text, corrected_text, proc_time_state]
)
save_button.click(
store_correction,
inputs=[original_text, corrected_text, audio_input, proc_time_state, age_input, native_speaker_input],
outputs=save_status
)
download_button.click(
prepare_download,
inputs=[audio_input, original_text, corrected_text],
outputs=download_output
)
demo.load(
toggle_language,
inputs=current_lang,
outputs=[
title_md, step1_md, audio_input, transcribe_button,
step2_md, original_text, corrected_text, step3_md,
age_input, native_speaker_input, step4_md, save_button,
save_status, download_button, download_output, lang_btn,
current_lang
]
)
demo.launch(share=True)