Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from typing import List, Optional, Tuple, Union | |
from transformers.cache_utils import Cache, DynamicCache, StaticCache | |
from transformers.models.llama.modeling_llama import LlamaRMSNorm, LlamaDecoderLayer | |
from transformers.modeling_outputs import BaseModelOutputWithPast | |
class AR_head(nn.Module): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`] | |
Args: | |
config: GemmaConfig | |
""" | |
def __init__(self, config, codebook_size, num_codebooks): | |
super().__init__() | |
# import pdb;pdb.set_trace() | |
self.num_codebooks = num_codebooks | |
vocab_size = codebook_size | |
self.sub_vocab_size = vocab_size // self.num_codebooks | |
# self.layers = nn.ModuleList( | |
# [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(3)] | |
# ) | |
# self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.linear_head = nn.Linear(config.hidden_size, self.sub_vocab_size) | |
self.layers = nn.ModuleList( | |
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(3)] | |
) | |
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# vocab_size 16384 | |
self.codebooks = nn.ModuleList() | |
for _ in range(self.num_codebooks-1): | |
codebook = nn.Embedding(self.sub_vocab_size, config.hidden_size) | |
self.codebooks.append(codebook) | |
# import pdb;pdb.set_trace() | |
self.config = config | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self._init_weights(self.layers) | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
# Ignore copy | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> torch.tensor: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if (input_ids is None) ^ (inputs_embeds is not None): | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | |
) | |
if self.gradient_checkpointing and self.training and use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | |
) | |
use_cache = False | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
past_seen_tokens = 0 | |
if use_cache: # kept for BC (cache positions) | |
if not isinstance(past_key_values, StaticCache): | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
past_seen_tokens = past_key_values.get_seq_length() | |
if cache_position is None: | |
if isinstance(past_key_values, StaticCache): | |
raise ValueError("cache_position is a required argument when using StaticCache.") | |
cache_position = torch.arange( | |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
) | |
if position_ids is None: | |
position_ids = cache_position.unsqueeze(0) | |
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) | |
# embed positions | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = None | |
for decoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
causal_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
use_cache, | |
cache_position, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=causal_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = None | |
if use_cache: | |
next_cache = ( | |
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache | |
) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static | |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. | |
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using | |
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 | |
def _update_causal_mask(self, attention_mask, input_tensor, cache_position): | |
if self.config._attn_implementation == "flash_attention_2": | |
if attention_mask is not None and 0.0 in attention_mask: | |
return attention_mask | |
return None | |
dtype, device = input_tensor.dtype, input_tensor.device | |
min_dtype = torch.finfo(dtype).min | |
sequence_length = input_tensor.shape[1] | |
if hasattr(self.layers[0].self_attn, "past_key_value"): # static cache | |
target_length = self.config.max_position_embeddings | |
else: # dynamic cache | |
target_length = ( | |
attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1 | |
) | |
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | |
if sequence_length != 1: | |
causal_mask = torch.triu(causal_mask, diagonal=1) | |
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | |
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) | |
if attention_mask is not None: | |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit | |
if attention_mask.dim() == 2: | |
mask_length = attention_mask.shape[-1] | |
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) | |
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) | |
elif attention_mask.dim() == 4: | |
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with | |
# cache. In that case, the 4D attention mask attends to the newest tokens only. | |
if attention_mask.shape[-2] < cache_position[0] + sequence_length: | |
offset = cache_position[0] | |
else: | |
offset = 0 | |
mask_shape = attention_mask.shape | |
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype | |
causal_mask[ | |
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3] | |
] = mask_slice | |
if ( | |
self.config._attn_implementation == "sdpa" | |
and attention_mask is not None | |
and attention_mask.device.type == "cuda" | |
): | |
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400). | |
is_tracing = ( | |
torch.jit.is_tracing() | |
or isinstance(input_tensor, torch.fx.Proxy) | |
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) | |
) | |
if not is_tracing and torch.any(attention_mask != 1): | |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
# Details: https://github.com/pytorch/pytorch/issues/110213 | |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | |
return causal_mask | |