File size: 5,576 Bytes
e148d83
 
 
73bc6a0
 
e148d83
 
73bc6a0
e133e90
73bc6a0
e148d83
 
73bc6a0
cf79142
e148d83
73bc6a0
 
 
 
 
 
 
989a90a
73bc6a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e148d83
73bc6a0
e148d83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73bc6a0
e148d83
 
 
 
 
 
 
 
 
 
73bc6a0
 
e148d83
73bc6a0
e148d83
 
 
 
73bc6a0
 
 
 
e148d83
 
73bc6a0
e148d83
 
 
73bc6a0
e148d83
73bc6a0
e148d83
 
 
 
 
 
73bc6a0
e148d83
 
73bc6a0
e148d83
 
 
 
 
 
73bc6a0
e148d83
 
 
73bc6a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e148d83
73bc6a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
import torch
import numpy as np
import os
import nibabel as nib
import torchio
import torch.nn as nn
import subprocess
import spaces  # Import spaces for GPU decoration
from scipy.ndimage.measurements import center_of_mass
from huggingface_hub import hf_hub_download
from monai.transforms import Compose, LoadImaged, Spacingd, CropForegroundd, SpatialPadd, CenterSpatialCropd
from monai.data import Dataset, DataLoader
from nnunet_mednext import create_mednext_encoder_v1

# Model and data directory setup
MODEL_DIR = "/root/.cache/huggingface/hub"
DATASET_DIR = os.path.join(MODEL_DIR, "BrainAgeNeXt")
REPO_ID = "FrancescoLR/BrainAgeNeXt"

# Ensure model directory exists
os.makedirs(MODEL_DIR, exist_ok=True)

# ๐Ÿ”น Function to Download Model Weights from Hugging Face
def download_model():
    if not os.path.exists(DATASET_DIR):
        os.makedirs(DATASET_DIR, exist_ok=True)
        print("Downloading BrainAgeNeXt model weights...")
        for i in range(1, 6):
            hf_hub_download(repo_id=REPO_ID, filename=f"BrainAge_{i}.pth", cache_dir=MODEL_DIR)
        print("โœ… BrainAgeNeXt model downloaded successfully.")

# ๐Ÿ”น Function to Load Model
def initialize_model():
    model_paths = [hf_hub_download(repo_id=REPO_ID, filename=f"BrainAge_{i}.pth", cache_dir=MODEL_DIR) for i in range(1, 6)]
    
    models = []
    for model_path in model_paths:
        model = MedNeXtEncReg().to(device)
        model.load_state_dict(torch.load(model_path, map_location=device))
        model.eval()
        models.append(model)
    return models

# ๐Ÿ”น Define Model
class MedNeXtEncReg(nn.Module):
    def __init__(self):
        super(MedNeXtEncReg, self).__init__()
        self.mednextv1 = create_mednext_encoder_v1(
            num_input_channels=1, num_classes=1, model_id='B', kernel_size=3, deep_supervision=True
        )
        self.global_avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
        self.regression_fc = nn.Sequential(
            nn.Linear(512, 64),
            nn.ReLU(),
            nn.Dropout(0.0),
            nn.Linear(64, 1)
        )

    def forward(self, x):
        x = self.mednextv1(x)
        x = self.global_avg_pool(x)
        x = torch.flatten(x, start_dim=1)
        age_estimate = self.regression_fc(x)
        return age_estimate.squeeze()

# ๐Ÿ”น Preprocessing Pipeline
def prepare_transforms():
    return Compose([
        LoadImaged(keys=["image"], ensure_channel_first=True),
        Spacingd(keys=["image"], pixdim=(1.0, 1.0, 1.0)),
        CropForegroundd(keys=["image"], allow_smaller=True, source_key="image"),
        SpatialPadd(keys=["image"], spatial_size=(160, 192, 160)),
        CenterSpatialCropd(keys=["image"], roi_size=(160, 192, 160)),
        torchio.transforms.ZNormalization(masking_method=lambda x: x > 0, keys=["image"])
    ])

# ๐Ÿ”น Process MRI File
def preprocess_mri(nifti_path):
    transforms = prepare_transforms()
    data_dict = {"image": nifti_path}
    dataset = Dataset([data_dict], transform=transforms)
    dataloader = DataLoader(dataset, batch_size=1, num_workers=0)
    return next(iter(dataloader))["image"].to(device)

# ๐Ÿ”น Run Brain Age Prediction (Decorated for GPU Execution)
@spaces.GPU(duration=90)
def predict_brain_age(nifti_file, actual_age, sex):
    if not os.path.exists(nifti_file.name):
        return "Error: MRI file not found"

    # Load Model
    models = initialize_model()

    # Preprocess MRI
    image = preprocess_mri(nifti_file.name)

    # Run Predictions
    predictions = []
    with torch.no_grad():
        for model in models:
            pred = model(image)
            predictions.append(pred.cpu().numpy())

    # Compute Median Brain Age Prediction
    predicted_brain_age = np.median(np.stack(predictions))

    # Apply Correction Based on Actual Age
    predicted_brain_age_corrected = (
        predicted_brain_age + (actual_age * 0.062) - 2.96 if actual_age > 18 else predicted_brain_age
    )

    brain_age_difference = predicted_brain_age_corrected - actual_age

    # Output Results
    return f"Predicted Brain Age: {predicted_brain_age_corrected:.2f} years", \
           f"Brain Age Difference (BAD): {brain_age_difference:.2f} years"

# ๐Ÿ”น Gradio Interface Setup
with gr.Blocks() as demo:
    gr.Markdown("""
    # ๐Ÿง  Brain Age Prediction with MedNeXt
    Upload an MRI scan (.nii.gz), enter your age and sex, and get a brain age prediction.
    """)

    with gr.Row():
        with gr.Column(scale=1):
            mri_input = gr.File(label="Upload MRI (NIfTI .nii.gz)")
            age_input = gr.Number(label="Enter Age", value=30)
            sex_input = gr.Radio(["Male", "Female"], label="Select Sex")
            submit_button = gr.Button("Predict")

        with gr.Column(scale=2):
            brain_age_output = gr.Textbox(label="Predicted Brain Age")
            bad_output = gr.Textbox(label="Brain Age Difference (BAD)")

    submit_button.click(
        fn=predict_brain_age,
        inputs=[mri_input, age_input, sex_input],
        outputs=[brain_age_output, bad_output]
    )

    gr.Markdown("""
    **Disclaimer:** This is a research tool and is not intended for clinical use.
    """)
# ๐Ÿ”น Debugging GPU Environment
if torch.cuda.is_available():
    print(f"GPU available: {torch.cuda.get_device_name(0)}")
    device = torch.device("cuda")
else:
    print("No GPU detected. Falling back to CPU.")
    os.system("nvidia-smi")
    device = torch.device("cpu")
    
# ๐Ÿ”น Download Model Weights
download_model()

# ๐Ÿ”น Run Gradio App
if __name__ == "__main__":
    demo.launch(share=True)