Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load your model and tokenizer from Hugging Face | |
model_name = 'redael/model_udc' | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Function to generate response | |
def generate_response(message, history, system_message, max_tokens, temperature, top_p): | |
# Prepare the conversation history | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, bot_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if bot_msg: | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": message}) | |
# Tokenize and prepare the input | |
prompt = "\n".join([f"{msg['role'].capitalize()}: {msg['content']}" for msg in messages]) | |
inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True, max_length=512).to(device) | |
# Generate the response | |
outputs = model.generate( | |
inputs['input_ids'], | |
max_length=max_tokens, | |
num_return_sequences=1, | |
pad_token_id=tokenizer.eos_token_id, | |
temperature=temperature, | |
top_p=top_p, | |
early_stopping=True, | |
do_sample=True # Enable sampling | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Clean up the response | |
response = response.split("Assistant:")[-1].strip() | |
response_lines = response.split('\n') | |
clean_response = [] | |
for line in response_lines: | |
if "User:" not in line and "Assistant:" not in line: | |
clean_response.append(line) | |
response = ' '.join(clean_response) | |
return [(message, response)] | |
# Create the Gradio chat interface | |
demo = gr.ChatInterface( | |
fn=generate_response, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
title="Chatbot", | |
description="Ask anything to the chatbot." | |
) | |
if __name__ == "__main__": | |
demo.launch() |