Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import print_function | |
import argparse | |
import datetime | |
import logging | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
from copy import deepcopy | |
import torch | |
import torch.distributed as dist | |
import deepspeed | |
import glob | |
import os | |
from hyperpyyaml import load_hyperpyyaml | |
from torch.cuda.amp import GradScaler, autocast | |
from torch.distributed.elastic.multiprocessing.errors import record | |
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType | |
from inspiremusic.utils.executor import Executor | |
from inspiremusic.utils.train_utils import ( | |
init_distributed, | |
init_dataset_and_dataloader, | |
init_optimizer_and_scheduler, | |
init_summarywriter, save_model, | |
wrap_cuda_model, check_modify_and_save_config) | |
def get_args(): | |
parser = argparse.ArgumentParser(description='training your network') | |
parser.add_argument('--train_engine', | |
default='torch_ddp', | |
choices=['torch_ddp', 'deepspeed'], | |
help='Engine for paralleled training') | |
parser.add_argument('--model', required=True, help='model which will be trained') | |
parser.add_argument('--config', required=True, help='config file') | |
parser.add_argument('--train_data', required=True, help='train data file') | |
parser.add_argument('--cv_data', required=True, help='cv data file') | |
parser.add_argument('--checkpoint', help='checkpoint model') | |
parser.add_argument('--model_dir', required=True, help='save model dir') | |
parser.add_argument('--tensorboard_dir', | |
default='tensorboard', | |
help='tensorboard log dir') | |
parser.add_argument('--ddp.dist_backend', | |
dest='dist_backend', | |
default='nccl', | |
choices=['nccl', 'gloo'], | |
help='distributed backend') | |
parser.add_argument('--num_workers', | |
default=0, | |
type=int, | |
help='number of subprocess workers for reading') | |
parser.add_argument('--prefetch', | |
default=100, | |
type=int, | |
help='prefetch number') | |
parser.add_argument('--pin_memory', | |
action='store_true', | |
default=True, | |
help='Use pinned memory buffers used for reading') | |
parser.add_argument('--deepspeed.save_states', | |
dest='save_states', | |
default='model_only', | |
choices=['model_only', 'model+optimizer'], | |
help='save model/optimizer states') | |
parser.add_argument('--timeout', | |
default=30, | |
type=int, | |
help='timeout (in seconds) of inspiremusic_join.') | |
parser.add_argument('--fp16', | |
action='store_true', | |
default=False, | |
help='Enable fp16 mixed precision training') | |
parser.add_argument('--lora', | |
action='store_true', | |
default=False, | |
help='Enable LoRA training') | |
parser.add_argument('--lora_rank', | |
default=4, | |
type=int, | |
help='LoRA rank') | |
parser.add_argument('--lora_alpha', | |
default=16, | |
type=int, | |
help='LoRA alpha') | |
parser.add_argument('--lora_dropout', | |
default=0.1, | |
type=float, | |
help='LoRA dropout rate') | |
parser.add_argument('--lora_target_modules', | |
nargs='+', | |
default=["k_proj","v_proj"], | |
help='Target modules to apply LoRA (e.g., ["q_proj", "v_proj"])') | |
parser = deepspeed.add_config_arguments(parser) | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = get_args() | |
logging.basicConfig(level=logging.DEBUG, | |
format='%(asctime)s %(levelname)s %(message)s') | |
override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model} | |
with open(args.config, 'r') as f: | |
configs = load_hyperpyyaml(f, overrides=override_dict) | |
configs['train_conf'].update(vars(args)) | |
# Init env for ddp | |
init_distributed(args) | |
# Get dataset & dataloader | |
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \ | |
init_dataset_and_dataloader(args, configs) | |
# Do some sanity checks and save config to arsg.model_dir | |
configs = check_modify_and_save_config(args, configs) | |
# Tensorboard summary | |
writer = init_summarywriter(args) | |
# load checkpoint | |
model = configs[args.model] | |
if args.checkpoint is not None: | |
model.load_state_dict(torch.load(args.checkpoint, map_location='cpu')) | |
else: | |
# Find and load the latest checkpoint | |
checkpoint_files = glob.glob(os.path.join(args.model_dir, '*.pt')) | |
if checkpoint_files: | |
latest_checkpoint = max(checkpoint_files, key=os.path.getctime) | |
logging.info(f"Loaded latest checkpoint from {latest_checkpoint}") | |
model.load_state_dict(torch.load(latest_checkpoint, map_location='cpu')) | |
if args.lora: | |
logging.info("Applying LoRA to the model...") | |
if not args.lora_target_modules: | |
raise ValueError("No target modules specified for LoRA. Please provide --lora_target_modules.") | |
lora_config = LoraConfig( | |
task_type="CAUSAL_LM", # Change to appropriate task type | |
inference_mode=False, | |
r=args.lora_rank, | |
lora_alpha=args.lora_alpha, | |
lora_dropout=args.lora_dropout, | |
target_modules=args.lora_target_modules | |
) | |
model.llm.model = get_peft_model(model.llm.model, lora_config) | |
# Optionally freeze the base model | |
else: | |
logging.info("LoRA is not enabled. Training the full model.") | |
# Dispatch model from cpu to gpu | |
model = wrap_cuda_model(args, model) | |
# Get optimizer & scheduler | |
model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model) | |
# Initialize AMP for torch_ddp if fp16 is enabled | |
scaler = None | |
if args.fp16: | |
scaler = GradScaler() | |
logging.info("Initialized AMP GradScaler for mixed precision training.") | |
# Save init checkpoints | |
info_dict = deepcopy(configs['train_conf']) | |
# Get executor | |
executor = Executor() | |
# Start training loop | |
for epoch in range(info_dict['max_epoch']): | |
executor.epoch = epoch | |
train_dataset.set_epoch(epoch) | |
dist.barrier() | |
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout)) | |
executor.train_one_epoch(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join, scaler=scaler) | |
dist.destroy_process_group(group_join) | |
if __name__ == '__main__': | |
main() | |