Spaces:
Running
Running
File size: 10,109 Bytes
758f7bd 3de0c5f b99a0ed 3de0c5f 9ba030d 3de0c5f 9ba030d 8d20685 3de0c5f 8143d70 23b9d2d 8143d70 3de0c5f 388d3b1 4e0e48e 388d3b1 4e0e48e 388d3b1 c6c35cd 4e0e48e 146c5dc 5f28ccd 146c5dc 388d3b1 92aa5f2 9cbf6e6 92aa5f2 9cbf6e6 d0f751c 3de0c5f 9cbf6e6 9e6d70c 2a6496c 3de0c5f d6bbbdc 3de0c5f 9e6d70c 3de0c5f d0f751c 9911ac3 3de0c5f 9e6d70c 3de0c5f 9e6d70c 3de0c5f 38256b4 3de0c5f d0f751c fdb20dd 3de0c5f 9e6d70c 3de0c5f d0f751c 9cbf6e6 38256b4 9cbf6e6 be9f18e 9cbf6e6 be9f18e 9cbf6e6 967a12a d8afde9 967a12a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
title: README
emoji: π
colorFrom: pink
colorTo: red
sdk: static
pinned: false
---
<p align="center" width="100%">
</p>
<div id="top" align="center">
<p style="font-size: 40px; font-weight: bold;">Knowledge Fusion of Large Language Models</p>
<h4> |<a href="https://arxiv.org/abs/2401.10491"> π FuseLLM Paper @ICLR2024 </a> | <a href="https://arxiv.org/abs/2408.07990"> π FuseChat Tech Report </a> | <a href="https://arxiv.org/abs/2412.03187"> π WRPO Paper @ICLR2025 </a> | <a href="https://arxiv.org/pdf/2503.04222"> π FuseChat-3.0 Tech Report </a> |
</h4>
<h4>
| <a href="https://huggingface.co/FuseAI"> π€ HuggingFace Repo </a> | <a href="https://github.com/fanqiwan/FuseLLM"> π± GitHub Repo </a> | <a href="https://huggingface.co/blog/Wanfq/fuseo1-preview"> π FuseO1-Preview Blog </a> |
</h4>
<p align="center">
<img src="logo.png" width="60%"> <br>
</p>
</div>
## FuseAI
FuseAI is an open-source research community focused on model fusion topics.
The community members currently applying model fusion on Foundation, Chat, o1-like LLMs.
Welcome to join us!
## News
### FuseO1-Preview [74.0 on AIME24, approaching OpenAI o1's 79.2]
- **Jan 21, 2025:** π₯ [FuseO1-Preview](https://huggingface.co/collections/FuseAI/fuseo1-preview-678eb56093649b2688bc9977) is our initial endeavor to enhance the System-II reasoning capabilities of large language models (LLMs) through innovative model fusion techniques. By employing our advanced [SCE](https://arxiv.org/abs/2408.07990) merging methodologies, we integrate multiple open-source o1-like LLMs into a unified model. Our goal is to incorporate the distinct knowledge and strengths from different reasoning LLMs into a single, unified model with strong System-II reasoning abilities, particularly in mathematics, coding, and science domains.
To achieve this, we conduct two types of model merging:
- **Long-Long Reasoning Merging**: This approach involves model fusion across LLMs that utilize long-CoT reasoning, with the goal of enhancing long-CoT reasoning capabilities. The resulted [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) achieves a Pass@1 accuracy of **74.0 on AIME24**, demonstrating significant performance improvements compared to the OpenAI o1-preview (44.6) and OpenAI o1-mini (63.4), even approaching OpenAI o1 (79.2).
- **Long-Short Reasoning Merging**: This approach involves model fusion between long-CoT and short-CoT LLMs, aiming to improve reasoning capabilities in both long and short reasoning processes. The resulted [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview) and [FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview) is capable of utilizing both long and short reasoning processes and demonstrates relatively strong performance in long reasoning tasks.
<p align="center">
<img src="fuseo1-preview.jpg" width="100%"> <br>
</p>
### FuseChat-3.0 [SOTA 8B LLM on AlpacaEval-2 & Arena-Hard]
- **Dec 12, 2024:** π₯ We release [FuseChat-3.0](https://huggingface.co/collections/FuseAI/fusechat-30-6752d18dec430bad7a236a75) and [Blog Post](https://slit-ai.github.io/FuseChat-3.0/). FuseChat-3.0 contains a series of models crafted to enhance performance by integrating the strengths of multiple source LLMs into more compact target LLMs. To achieve this fusion, we utilized four powerful source LLMs: [Gemma-2-27b-It](https://huggingface.co/google/gemma-2-27b-it), [Mistral-Large-Instruct-2407](https://huggingface.co/mistralai/Mistral-Large-Instruct-2407), [Qwen-2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct), and [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct). For the target LLMs, we employed three widely-used smaller modelsβ[Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct), [Gemma-2-9B-It](https://huggingface.co/google/gemma-2-9b-it), and [Qwen-2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)βalong with two even more compact modelsβ[Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) and [Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct). . The implicit model fusion process involves a two-stage training pipeline comprising Supervised Fine-Tuning (SFT) to mitigate distribution discrepancies between target and source LLMs, and Direct Preference Optimization (DPO) for learning preferences from multiple source LLMs. The resulting FuseChat-3.0 models demonstrated substantial improvements in tasks related to general conversation, instruction following, mathematics, and coding. Notably, when Llama-3.1-8B-Instruct served as the target LLM, our fusion approach achieved an average improvement of **6.8** points across 14 benchmarks. Moreover, it showed significant improvements of **37.1** and **30.1** points on instruction-following test sets AlpacaEval-2 and Arena-Hard respectively.
<p align="center">
<img src="FuseChat-3.0.png" width="60%"> <br>
</p>
### FuseChat [SOTA 7B LLM on MT-Bench]
- **Aug 16, 2024:** π₯π₯π₯π₯ We update the [FuseChat tech report](https://arxiv.org/abs/2408.07990) and release [FuseChat-7B-v2.0](https://huggingface.co/FuseAI/FuseChat-7B-v2.0), which is the fusion of six prominent chat LLMs with diverse architectures and scales, namely [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5), [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), [InternLM2-Chat-20B](https://huggingface.co/internlm/internlm2-chat-20b), [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), and [Qwen1.5-Chat-72B](https://huggingface.co/Qwen/Qwen1.5-72B-Chat). FuseChat-7B-v2.0 achieves an average performance of **7.38** on MT-Bench (GPT-4-0125-Preview as judge LLM), which is comparable to [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) and approaches [GPT-3.5-Turbo-1106](https://platform.openai.com/docs/models/gpt-3-5-turbo).
- **Mar 13, 2024:** π₯π₯π₯ We release a HuggingFace Space for [FuseChat-7B](https://huggingface.co/spaces/FuseAI/FuseChat-7B), try it now!
- **Feb 26, 2024:** π₯π₯ We release [FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM), which is the fusion of three prominent chat LLMs with diverse architectures and scales, namely [NH2-Mixtral-8x7B](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), and [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5). FuseChat-7B-VaRM achieves an average performance of **8.22** on MT-Bench, outperforming various powerful chat LLMs like [Starling-7B](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat), and [Tulu-2-DPO-70B](https://huggingface.co/allenai/tulu-2-dpo-70b), even surpassing [GPT-3.5 (March)](https://platform.openai.com/docs/models/gpt-3-5-turbo), [Claude-2.1](https://www.anthropic.com/news/claude-2-1), and approaching [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).
- **Feb 25, 2024:** π₯ We release [FuseChat-Mixture](https://huggingface.co/datasets/FuseAI/FuseChat-Mixture), which is a comprehensive training dataset covers different styles and capabilities, featuring both human-written and model-generated, and spanning general instruction-following and specific skills.
<p align="center">
<img src="tab0.png" width="60%"> <br>
</p>
<p align="center">
<img src="tab1.png" width="95%"> <br>
</p>
### FuseLLM [Surpassing Llama-2-7B]
- **Jan 22, 2024:** π₯ We release [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B), which is the fusion of three open-source foundation LLMs with distinct architectures, including [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf), [OpenLLaMA-7B](https://huggingface.co/openlm-research/open_llama_7b_v2), and [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).
<p align="center">
<img src="fig0.png" width="95%"> <br>
</p>
<p align="center">
<img src="fig1.png" width="95%"> <br>
</p>
## Citation
Please cite the following paper if you reference our model, code, data, or paper related to FuseLLM.
```
@inproceedings{wan2024knowledge,
title={Knowledge Fusion of Large Language Models},
author={Fanqi Wan and Xinting Huang and Deng Cai and Xiaojun Quan and Wei Bi and Shuming Shi},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/pdf?id=jiDsk12qcz}
}
```
Please cite the following paper if you reference our model, code, data, or paper related to FuseChat.
```
@article{wan2024fusechat,
title={FuseChat: Knowledge Fusion of Chat Models},
author={Fanqi Wan and Longguang Zhong and Ziyi Yang and Ruijun Chen and Xiaojun Quan},
journal={arXiv preprint arXiv:2408.07990},
year={2024}
}
```
Please cite the following paper if you reference our model, code, data, or paper related to WRPO.
```
@inproceedings{yang2025weightedreward,
title={Weighted-Reward Preference Optimization for Implicit Model Fusion},
author={Ziyi Yang and Fanqi Wan and Longguang Zhong and Tianyuan Shi and Xiaojun Quan},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=fq24pEb8SL}
}
```
Please cite the following paper if you reference our model, code, data, or paper related to FuseChat-3.0.
```
@article{yang2025fusechat,
title={FuseChat-3.0: Preference Optimization Meets Heterogeneous Model Fusion},
author={Ziyi Yang and Fanqi Wan and Longguang Zhong and Canbin Huang and Guosheng Liang and Xiaojun Quan},
journal={arXiv preprint arXiv:2503.04222},
year={2025},
}
```
|