Spaces:
Running
Running
import gradio as gr | |
import torch | |
import torchaudio | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
# Load MMS ASR model | |
MODEL_NAME = "facebook/mms-1b-all" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
processor = AutoProcessor.from_pretrained(MODEL_NAME) | |
model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_NAME).to(device) | |
asr_pipeline = pipeline("automatic-speech-recognition", model=model, processor=processor, torch_dtype=torch.float16, device=0 if device == "cuda" else -1) | |
# Speech-to-text function | |
def transcribe(audio): | |
waveform, sr = torchaudio.load(audio) | |
waveform = torchaudio.transforms.Resample(sr, 16000)(waveform) # Ensure 16kHz sample rate | |
text = asr_pipeline({"array": waveform.squeeze().numpy(), "sampling_rate": 16000})["text"] | |
return text | |
# Gradio UI | |
gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Text(label="Transcription"), | |
title="Real-time Speech-to-Text", | |
description="Speak into your microphone and see the transcribed text.", | |
).launch() | |