File size: 1,070 Bytes
3c2fc1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
# Import necessary modules
import gradio as gr
from transformers import pipeline
# Load the fine-tuned model from Hugging Face
pipe = pipeline("automatic-speech-recognition", model="Futuresony/whisper-small-sw")
# Function to transcribe audio
def transcribe(audio):
if audio is None:
return "Please upload or record an audio file."
print("Transcribing audio...")
result = pipe(audio)["text"]
return result
# Gradio App
with gr.Blocks() as demo:
gr.Markdown("# ποΈ Swahili Speech-to-Text Transcription App")
with gr.Row():
audio_input = gr.Audio(source="microphone", type="filepath", label="π€ Record Audio")
file_input = gr.Audio(source="upload", type="filepath", label="π Upload Audio File")
transcribe_button = gr.Button("Transcribe")
output_text = gr.Textbox(label="π Transcription Output")
transcribe_button.click(transcribe, inputs=[audio_input], outputs=output_text)
transcribe_button.click(transcribe, inputs=[file_input], outputs=output_text)
# Launch the app
demo.launch()
|